| 1. |
Koch G, Altomare D, Benussi A, et al. The emerging field of non-invasive brain stimulation in Alzheimer’s disease. Brain, 2024, 147(12): 4003-4016.
|
| 2. |
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res, 2018, 7: F1000 Faculty Rev-1161.
|
| 3. |
2024 Alzheimer’s disease facts and figures. Alzheimers Dement, 2024, 20(5): 3708-3821.
|
| 4. |
Busche M A, Konnerth A. Impairments of neural circuit function in Alzheimer’s disease. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150429.
|
| 5. |
Frere S, Slutsky I. Alzheimer’s disease: From firing instability to homeostasis network collapse. Neuron, 2018, 97(1): 32-58.
|
| 6. |
Rolls E T, Wirth S. Spatial representations in the primate hippocampus, and their functions in memory and navigation. Prog Neurobiol, 2018, 171: 90-113.
|
| 7. |
Horovitz D J, Askins L A, Regnier G M, et al. Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions. Neurobiol Aging, 2025, 148: 80-97.
|
| 8. |
Neuman K M, Molina-Campos E, Musial T F, et al. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct Funct, 2015, 220(6): 3143-3165.
|
| 9. |
Bouwman M M A, Frigerio I, Reijner N, et al. Synaptic density in the hippocampal and parahippocampal subregions and its association with the severity of axonal damage and cognitive decline in Alzheimer’s disease. Alzheimers Dement, 2024, 20: e092170.
|
| 10. |
Forner S, Kawauchi S, Balderrama-Gutierrez G, et al. Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Sci Data, 2021, 8(1): 270.
|
| 11. |
Ebrahimi R, Golzari Z, Heidari-Foroozan M, et al. Impaired synaptic plasticity mechanisms in Alzheimer’s disease. Metab Brain Dis, 2025, 40(7): 277.
|
| 12. |
Button E B, Boyce G K, Wilkinson A, et al. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimers Res Ther, 2019, 11(1): 44.
|
| 13. |
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium, 2018, 70: 87-94.
|
| 14. |
Sushma, Mondal A C. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol Cell Neurosci, 2019, 101: 103414.
|
| 15. |
Venkateswaran N, Karthik S, Raghavan S, et al. A temporal analysis of long term synaptic plasticity. Int J Dev Neurosci, 2006, 24(8): 549-550.
|
| 16. |
Ji Y, Yang C, Pang X, et al. Repetitive transcranial magnetic stimulation in Alzheimer’s disease: Effects on neural and synaptic rehabilitation. Neural Regen Res, 2025, 20(2): 326-342.
|
| 17. |
Bast T, Pezze M, McGarrity S. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharmacol, 2017, 174(19): 3211-3225.
|
| 18. |
Harris S S, Wolf F, De Strooper B, et al. Tipping the scales: peptide-dependent dysregulation of neural circuit dynamics in Alzheimer’s disease. Neuron, 2020, 107(3): 417-435.
|
| 19. |
Selkoe D J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594): 789-791.
|
| 20. |
Choung J S, Kim J M, Ko M H, et al. Therapeutic efficacy of repetitive transcranial magnetic stimulation in an animal model of Alzheimer’s disease. Sci Rep, 2021, 11(1): 437.
|
| 21. |
Matt E, Mitterwallner M, Radjenovic S, et al. Ultrasound neuromodulation with transcranial pulse stimulation in Alzheimer disease: A randomized clinical trial. JAMA Netw Open, 2025, 8(2): e2459170.
|
| 22. |
Zhang S, Guo Z, Xu Y, et al. Transcranial magneto-acoustic stimulation improves spatial memory and modulates hippocampal neural oscillations in a mouse model of Alzheimer’s disease. Front Neurosci, 2024, 18: 1313639.
|
| 23. |
Mi J, Zhang S, Lu X, et al. Transcranial magneto-acoustic stimulation enhances cognitive and working memory in AD rats by regulating theta-gamma oscillation coupling and synergistic activity in the hippocampal CA3 region. Brain Sci, 2025, 15(7): 701.
|
| 24. |
Zhou X, Liu S, Wang Y, et al. High-resolution transcranial electrical simulation for living mice based on magneto-acoustic effect. Front Neurosci, 2019, 13: 1342.
|
| 25. |
Zhang S, Xie X, Xu Y, et al. Effects of transcranial magneto-acoustic stimulation on cognitive function and neural signal transmission in the hippocampal CA1 region of mice. Neuroscience, 2024, 556: 86-95.
|
| 26. |
Chu F, Tan R, Wang X, et al. Transcranial magneto-acoustic stimulation attenuates synaptic plasticity impairment through the activation of Piezo1 in Alzheimer’s disease mouse model. Research, 2023, 6: 0130.
|
| 27. |
張帥, 武健康, 許家悅, 等. 經顱磁聲電刺激對前額葉皮層神經集群鈣信號的影響. 生物醫學工程學雜志, 2022, 39(1): 19-27.
|
| 28. |
Chen T W, Wardill T J, Sun Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 2013, 499(7458): 295-300.
|
| 29. |
Dong X, Zhang X, Wang F, et al. Simultaneous calcium recordings of hippocampal CA1 and primary motor cortex M1 and their relations to behavioral activities in freely moving epileptic mice. Exp Brain Res, 2020, 238(6): 1479-1488.
|
| 30. |
Mehder R H, Bennett B M, Andrew R D. Morphometric analysis of hippocampal and neocortical pyramidal neurons in a mouse model of late onset Alzheimer’s disease. J Alzheimers Dis, 2020, 74(4): 1069-1083.
|
| 31. |
Tan X, Ma H, Guo X, et al. Disinhibition of hippocampal parvalbumin interneurons on pyramidal neurons participates in LPS-induced cognitive dysfunction. Neurosci Lett, 2024, 821: 137614.
|
| 32. |
Miller M R, Lee Y F, Kastanenka K V. Calcium sensor yellow cameleon 3. 6 as a tool to support the calcium hypothesis of Alzheimer’s disease. Alzheimer Dement, 2023, 19(9): 4196-4203.
|
| 33. |
Guo M, Zhang F, Liu S, et al. The role of TRPV4 in acute sleep deprivation-induced memory impairment: Mechanisms of calcium dysregulation and synaptic plasticity disruption. Cell Insight, 2025, 4(3): 100240.
|