| 1. |
國家心血管病中心. 中國心血管健康與疾病報告 2024 概要. 中國循環雜志, 2025, 40(6): 521-559.
|
| 2. |
皇志慧. 沉浸交互式血管介入手術機器人及力反饋技術研究. 上海: 上海大學, 2019.
|
| 3. |
王鑒, 高翔, 張峰, 等. 血管介入機器人輔助介入治療研究現狀. 介入放射學雜志, 2023, 32(6): 619-623.
|
| 4. |
趙含霖, 謝曉亮, 奉振球, 等. 血管介入手術機器人系統綜述. 中國醫療設備, 2020, 35(12): 11-16.
|
| 5. |
劉龍, 曹彤, 劉達, 等. 主從式血管介入系統的力反饋實現. 高技術通訊, 2014, 24(5): 545-550.
|
| 6. |
Bao X Q, Guo S X, Yang C, et al. Haptic interface with force and torque feedback for robot-assisted endovascular catheterization. IEEE/ASME Trans Mechatr, 2023, 29(2): 11-25.
|
| 7. |
Shi P, Guo S, Zhang L, et al. Design and evaluation of a haptic robot-assisted catheter operating system with collision protection function. IEEE Sensors J, 2021, 21(18): 20807-20816.
|
| 8. |
董兆苒, 董明利, 何彥霖, 等. 血管介入手術導絲末端檢測方法研究. 儀器儀表學報, 2023, 44(2): 221-229.
|
| 9. |
Zhao Y, Guo S, Xiao N, et al. A novel sensing system of catheter/guidewire operation for vascular interventional surgery// 2017 IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu: IEEE, 2017: 416-421.
|
| 10. |
Zhao D, Guo S, Lyu C, et al. A novel clamping mechanism design for vascular interventional surgery robot// 2022 IEEE International Conference on Mechatronics and Automation (ICMA). Guilin: IEEE, 2022: 1842-1847.
|
| 11. |
賴德偉. 面向微創血管介入手術機器人從操作手的傳感技術開發. 天津: 天津大學, 2022.
|
| 12. |
Saliba W, Cummings J E, Oh S, et al. Novel robotic catheter remote control system: feasibility and safety of transseptal puncture and endocardial catheter navigation. J Cardiovasc Electrophysiol, 2006, 17(10): 1102-1105.
|
| 13. |
Di Biase L, Wang Y, Horton R, et al. Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: Single‐center experience. J Cardiovasc Electrophysiol, 2009, 20(12): 1328-1335.
|
| 14. |
Saliba W, Reddy V Y, Wazni O, et al. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol, 2008, 51(25): 2407-2411.
|
| 15. |
Kanagaratnam P, Koa-Wing M, Wallace D T, et al. Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath. J Interv Card Electrophysiol, 2008, 21(1): 19-26.
|
| 16. |
Smilowitz N R, Weisz G. Robotic-assisted angioplasty: current status and future possibilities. Curr Cardiol Rep, 2012, 14(5): 642-646.
|
| 17. |
Weisz G, Metzger D C, Caputo R P, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J Am Coll Cardiol, 2013, 61(15): 1596-1600.
|
| 18. |
Granada J F, Delgado J A, Uribe M P, et al. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv, 2011, 4(4): 460-465.
|
| 19. |
Carrozza Jr J P. Robotic-assisted percutaneous coronary intervention—Filling an unmet need. J Cardiovasc Transl Res, 2012, 5(1): 62-66.
|
| 20. |
Lo N, Gutierrez J A, Swaminathan R V. Robotic-assisted percutaneous coronary intervention. Curr Treat Options Cardiovasc Med, 2018, 20(2): 14.
|
| 21. |
Payne C J, Rafii-Tari H, Yang G Z. A force feedback system for endovascular catheterisation// 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012.
|
| 22. |
Zhao D, Guo S, Lyu C, et al. A portable surgeon’s habits-based master manipulator for vascular interventional surgery robots// 2023 IEEE International Conference on Mechatronics and Automation (ICMA). Harbin: IEEE, 2023: 1888-1893.
|
| 23. |
Guo J, Jin X, Guo S, et al. A vascular interventional surgical robotic system based on force-visual feedback. IEEE Sensors J, 2019, 19(23): 11081-11089.
|
| 24. |
Yin X, Guo S, Yue C, et al. A haptic catheter operating system using magnetorheological fluids// 2014 IEEE International Conference on Mechatronics and Automation. Tianjin: IEEE, 2014: 1631-1636.
|
| 25. |
奉振球, 侯增廣, 邊桂彬, 等. 微創血管介入手術機器人的主從交互控制方法與實現. 自動化學報, 2016, 42(5): 696-705.
|
| 26. |
Wang T, Zhang D, Da L. Remote‐controlled vascular interventional surgery robot. Int J Med Robot Comput Assist Surg, 2010, 6(2): 194-201.
|
| 27. |
Da L, Liu D. Accuracy experimental study of the vascular interventional surgical robot propulsive mechanism// 2011 IEEE/ICME International Conference on Complex Medical Engineering. Harbin: IEEE, 2011: 412-416.
|
| 28. |
羅彪, 曹彤, 和麗, 等. 血管介入手術機器人推進機構設計及精度研究. 高技術通訊, 2010, 20(12): 1281-1285.
|
| 29. |
Feng Z-Q, Bian G-B, Xie X-L, et al. Design and evaluation of a bio-inspired robotic hand for percutaneous coronary intervention// 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle: IEEE, 2015.
|
| 30. |
Jian G, Shuxiang G, Nan X, et al. Development of force sensing systems for a novel robotic catheter system//2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guangzhou: IEEE, 2012: 2213-2218.
|
| 31. |
Dagnino G, Liu J, Abdelaziz M E, et al. Haptic feedback and dynamic active constraints for robot-assisted endovascular catheterization//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1770-1775.
|
| 32. |
鄭炬炬, 孫志峻, 閆鶴, 等. 運用中空超聲電機的血管介入手術機器人系統. 振動測試與診斷, 2021, 41(5): 976-983,1037-1038.
|
| 33. |
王濤. 微創手術機器人力反饋主手系統研究. 哈爾濱: 哈爾濱工業大學, 2020.
|
| 34. |
齊智斌, 郭聯龍, 蘭帥航, 等. 基于改進 Stribeck 模型的伺服系統摩擦補償研究. 微電機, 2024, 57(8): 20-25.
|
| 35. |
彭健德. 基于 Stribeck 模型結合模糊濾波的柔性伺服系統摩擦補償策略研究. 深圳: 深圳大學, 2023.
|
| 36. |
傅平, 謝朝陽. 基于改進 Stribeck 模型的超聲波電機力矩-速度遲滯特性研究. 振動與沖擊, 2024, 43(15): 269-276.
|
| 37. |
Phillips J R. An Integrated Stribeck Friction Model: analysis, simulation, and comparison with Dahl and LuGre. Simulation, 2025, 101(4): 477-491.
|
| 38. |
方群玲, 孫虎兒, 劉維雄. 不同載荷下滑塊軸承潤滑狀態的 Stribeck 曲線研究. 機械傳動, 2016, 40(1): 124-126.
|
| 39. |
馮浩, 姜金葉, 宋倩玉, 等. 電液伺服系統摩擦參數辨識與補償控制. 振動測試與診斷, 2024, 44(5): 922-927, 1037-1038.
|
| 40. |
Hwang S W, Lim M S, Hong J P. Hysteresis torque estimation method based on iron-loss analysis for permanent magnet synchronous motor. IEEE Trans Magn, 2016, 52(7): 1-4.
|