| 1. |
Ferrari A J, Charlson F J, Norman R E, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med, 2013, 10(11): e1001547..
|
| 2. |
Cai H, Xie X M, Zhang Q, et al. Prevalence of suicidality in major depressive disorder: a systematic review and meta-analysis of comparative studies. Front Psychiatry, 2021, 12: 690130..
|
| 3. |
Liu L, Liu C, Wang Y, et al. Herbal medicine for anxiety, depression and insomnia. Curr Neuropharmacol, 2015, 13(4): 481-493..
|
| 4. |
Kevric J, Subasi A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Proces, 2017, 31: 398-406..
|
| 5. |
Pagani M, Gutierrez-Barragan D, de Guzman A E, et al. Mapping and comparing fMRI connectivity networks across species. Commun Biol, 2023, 6(1): 1238..
|
| 6. |
Hill R M, Devasagayam J, Holmes N, et al. Using OPM-MEG in contrasting magnetic environments. NeuroImage, 2022, 253: 119084..
|
| 7. |
Li X, Hu B, Sun S, et al. EEG-based mild depressive detection using feature selection methods and classifiers. Comput Methods Programs Biomed, 2016, 136: 151-161..
|
| 8. |
Daly I. Neural component analysis: a spatial filter for electroencephalogram analysis. J Neurosci Methods, 2021, 348: 108987..
|
| 9. |
Nedzhibov G. Blind source separation using time-delayed dynamic mode decomposition. Computation, 2025, 13(2): 31..
|
| 10. |
Zhang B, Cai H, Song Y, et al. Computer-aided recognition based on decision-level multimodal fusion for depression. IEEE J Biomed Health Inform, 2022, 26(7): 3466-3477..
|
| 11. |
Peng H, Hu B, Shi Q, et al. Removal of ocular artifacts in EEG-an improved approach combining DWT and ANC for portable applications. IEEE J Biomed Health Inform, 2013, 17(3): 600-607..
|
| 12. |
Noorbasha S K, Sudha G F. Removal of EOG artifacts and separation of different cerebral activity components from single channel EEG-an efficient approach combining SSA-ICA with wavelet thresholding for BCI applications. Biomed Signal Proces, 2021, 63: 102168..
|
| 13. |
Wu Z, Huang N. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Data Science and Adaptive Analysis, 2009, 1: 1-41..
|
| 14. |
Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544..
|
| 15. |
Li C, Wu Y, Lin H, et al. ECG denoising method based on an improved VMD algorithm. IEEE Sensors J, 2022, 22(23): 22725-22733..
|
| 16. |
Liu C, Zhu L, Ni C. Chatter detection in milling process based on VMD and energy entropy. Mechanical Systems and Signal Processing, 2018, 105: 169-182..
|
| 17. |
He X, Zhou X, Yu W, et al. Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals. ISA Trans, 2021, 111: 360-375..
|
| 18. |
Xia Y K, Wang W T, Li X Y. Adaptive parameter selection variational mode decomposition based on bayesian optimization and its application to the detection of ITSC in PMSM. IEEE Access, 2024, 12: 38594-38614..
|
| 19. |
Xuan Y K, Qian W, Zhang M. Adaptive VMD parameter optimization: a method based on improved genetic algorithm with temporal and frequency domain characterization//2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an: IEEE, 2023: 1-6..
|
| 20. |
Zhang Y, Shen H, Li M, et al. Brain biometrics of steady-state visual evoked potential functional networks. IEEE Transactions on Cognitive and Developmental Systems, 2022, 15(4): 1694-1701..
|
| 21. |
張冰濤, 周文穎, 李延林, 等. 基于腦功能網絡的抑郁癥識別研究. 生物醫學工程學雜志, 2022, 39(1): 47-55..
|
| 22. |
王建尚, 張冰濤, 王小敏, 等. 基于頻空融合與 3D-CNN-Attention 的抑郁癥識別. 中國醫學物理學雜志, 41(10): 1307-1314..
|
| 23. |
Sharma G, Parashar A, Joshi A M. DepHNN: a novel hybrid neural network for electroencephalogram (EEG)-based screening of depression. Biomedical Signal Processing and Control, 2021, 66: 102393..
|
| 24. |
Song X, Yan D, Zhao L, et al. LSDD-EEGNet: an efficient end-to-end framework for EEG-based depression detection. Biomedical Signal Processing and Control, 2022, 75: 103612..
|
| 25. |
張冰濤, 魏丹, 常文文, 等. 基于可視圖的精神障礙識別方法. 生物醫學工程學雜志, 2023, 40(3): 442-449..
|
| 26. |
Zheng J, Su M, Ying W, et al. Improved uniform phase empirical mode decomposition and its application in machinery fault diagnosis. Measurement, 2021, 179: 109425..
|
| 27. |
Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Computing, 2018, 22: 387-408..
|
| 28. |
Petrongolo M, Zhu L. Noise suppression for dual-energy CT through entropy minimization. IEEE T Med Imag, 2015, 34(11): 2286-2297..
|
| 29. |
Li D, Yang Z, Hou F, et al. EEG-based emotion recognition with haptic vibration by a feature fusion method. IEEE T Instrum Meas, 2022, 71: 2504111..
|
| 30. |
Wang T, Huang X, Xiao Z, et al. EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network. EURASIP Journal on Advances in Signal Processing, 2024, 2024: 49..
|
| 31. |
Zhang B, Yan G, Yang Z, et al. Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 215-229..
|
| 32. |
郁湧, 王瑩港, 羅正國, 等. 基于聚類系數和節點中心性的鏈路預測算法. 清華大學學報(自然科學版), 2022, 62(1): 98-104..
|
| 33. |
Klados M A, Bamidis P D. A semi- simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques. Data Brief, 2016, 8: 1004-1006..
|
| 34. |
Cai H, Yuan Z, Gao Y, et al. A multi-modal open dataset for mental-disorder analysis. Sci Data, 2022, 9(1): 178..
|
| 35. |
Zhang B, Wang C, Chen N, et al. Double sparse dictionary-based electroencephalography channel selection for depression analysis. IEEE J Biomed Health Inform, 2025, 29(10): 7129-7139..
|
| 36. |
Gajbhiye P, Tripathy R K, Pachori R B, et al. Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms. IEEE Sensors Journal, 2020, 20(7): 3687-3696..
|
| 37. |
Cavanagh J F, Bismark A W, Frank M J, et al. Multiple dissociations between comorbid depression and anxiety on reward and punishment processing: evidence from computationally informed EEG. Comput Psychiatr, 2019, 3: 1-17..
|