| 1. |
Habay J, Van Cutsem J, Verschueren J, et al. Mental fatigue and sport-specific psychomotor performance: a systematic review. Sports Med, 2021, 51(7): 1527-1548.
|
| 2. |
Brown D M Y, Graham J D, Innes K I, et al. Effects of prior cognitive exertion on physical performance: a systematic review and meta-analysis. Sports Med, 2020, 50(3): 497-529.
|
| 3. |
Martin K, Meeusen R, Thompson K G, et al. Mental fatigue impairs endurance performance: a physiological explanation. Sports Med, 2018, 48(9): 2041-2051.
|
| 4. |
Kunasegaran K, Ismail A M H, Ramasamy S, et al. Understanding mental fatigue and its detection: a comparative analysis of assessments and tools. PeerJ, 2023, 11: e15744.
|
| 5. |
Holgado D, Mesquida C, Román-caballero R. Assessing the evidential value of mental fatigue and exercise research. Sports Med, 2023, 53(12): 2293-2307.
|
| 6. |
Bini S A. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?. J Arthroplasty, 2018, 33(8): 2358-2361.
|
| 7. |
Koay H V, Chuah J H, Chow C O, et al. Detecting and recognizing driver distraction through various data modality using machine learning: a review, recent advances, simplified framework and open challenges (2014–2021). Eng Appl Artif Intell, 2022, 115(6): 105309.
|
| 8. |
Liu Y, Lan Z, Cui J, et al. Inter-subject transfer learning for EEG-based mental fatigue recognition. Adv Eng Inform, 2020, 46(4): 101157.
|
| 9. |
Zhong L, Xu M, Li J, et al. From micro to meso: a data-driven mesoscopic region division method based on functional connectivity for EEG-based driver fatigue detection. IEEE J Biomed Health Inform, 2025, 29(4): 2603-2616.
|
| 10. |
Zhao P, Lian C, Xu B, et al. Multiscale global prompt transformer for EEG-based driver fatigue recognition. IEEE Trans Autom Sci Eng, 2025, 22: 2700-2711.
|
| 11. |
楊慧舟, 劉云飛, 夏麗娟. 前額單通道腦電信號的疲勞特征提取及分類算法. 生物醫學工程學雜志, 2024, 41(4): 732-741.
|
| 12. |
Alghanim M, Attar H, Rezaee K, et al. A hybrid deep neural network approach to recognize driving fatigue based on EEG signals. Int J Intell Syst, 2024, 2024: 9898333.
|
| 13. |
馮笑, 代少升, 黃煉. 基于可解釋深度學習的單通道腦電跨被試疲勞駕駛檢測. 儀器儀表學報, 2023, 44(5): 140-149.
|
| 14. |
Chen X, Hsu C F, Xu D, et al. Loss of frontal regulator of vigilance during sleep inertia: a simultaneous EEG-fMRI study. Hum Brain Mapp, 2020, 41(15): 4288-4298.
|
| 15. |
Li G, Huang S, Xu W, et al. The impact of mental fatigue on brain activity: a comparative study both in resting state and task state using EEG. BMC Neurosci, 2020, 21(1): 20.
|
| 16. |
DaneshmanD H, Kohler J, Bach F, et al. Batch normalization provably avoids ranks collapse for randomly initialised deep networks//Proceedings of the 34th International Conference on Neural Information Processing Systems, Red Hook: Curran Associates Inc, 2020: 18387-18398.
|
| 17. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach: NIPS, 2017: 6000-6010.
|
| 18. |
Li J, Liang X, Wu L, et al. Randomness regularization with simple consistency training for neural networks. IEEE Trans Pattern Anal Mach Intell, 2024, 46(8): 5763-5778.
|
| 19. |
Zheng W L, Lu B L. A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng, 2017, 14(2): 026017.
|
| 20. |
Cao Z, Chuang C H, King J K, et al. Multi-channel EEG recordings during a sustained-attention driving task. Sci Data, 2019, 6(1): 19.
|
| 21. |
Lu Y, Zheng W L, Li B, et al. Combining eye movements and EEG to enhance emotion recognition//Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires: The International Joint Conferences on Artificial Intelligence, 2015: 1170-1176.
|
| 22. |
Gao X Y, Zhang Y F, Zheng W L, et al. Evaluating driving fatigue detection algorithms using eye tracking glasses//2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier: IEEE, 2015: 767-770.
|
| 23. |
Cui J, Lan Z, Liu Y, et al. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG. Methods, 2022, 202: 173-184.
|
| 24. |
Kramer O. K-nearest neighbors//Kramer O. Dimensionality reduction with unsupervised nearest neighbors. Berlin: Springer Berlin Heidelberg, 2013: 13-23.
|
| 25. |
Cutler A, Cutler D R, Stevens J R. Random forests//Zhang C, Ma Y. Ensemble machine learning: methods and applications. New York: Springer, 2012: 157-175.
|
| 26. |
Chen S, Webb G I, Liu L, et al. A novel selective na?ve bayes algorithm. Knowl Based Syst, 2020, 192: 105361.
|
| 27. |
Lederer J. Support-vector machines//Lederer J. A first course in statistical learning: with data examples and python code. Cham: Springer Nature Switzerland, 2025: 187-243.
|
| 28. |
Alhagry S, Aly A, El-khoribi R A. Emotion recognition based on EEG using LSTM recurrent neural network. Int J Adv Comput Sci Appl, 2017, 8(10): 355-358.
|
| 29. |
Eldele E, Chen Z, Liu C, et al. An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 809-818.
|
| 30. |
Song Y, Zheng Q, Liu B, et al. EEG Conformer: convolutional Transformer for EEG decoding and visualization. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 710-719.
|
| 31. |
Gong P, Wang P, Zhou Y, et al. TFAC-net: a temporal-frequential attentional convolutional network for driver drowsiness recognition with single-channel EEG. IEEE Trans Intell Transp Syst, 2024, 25(7): 7004-7016.
|
| 32. |
Ma L, Marshall P J, Wright W G. The impact of external and internal focus of attention on visual dependence and EEG alpha oscillations during postural control. J Neuroeng Rehabil, 2022, 19: 81.
|