| 1. |
Li C, Sohrabpour A, Jiang H, et al. High-frequency hubs of the ictal cross-frequency coupling network predict surgical outcome in epilepsy patients. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1290-1299.
|
| 2. |
Brodie M J, Barry S J, Bamagous G A, et al. Patterns of treatment response in newly diagnosed epilepsy. Neurology, 2012, 78(20): 1548-1554.
|
| 3. |
劉蒙蒙, 徐桂芝, 于洪麗, 等. 經顱直流電刺激下腦卒中患者腦電功率譜密度研究. 生物醫學工程學雜志, 2022, 39(3): 498-506.
|
| 4. |
黃文敏, 操德智. 新型神經調控技術在兒童藥物難治性癲癇的應用展望. 癲癇雜志, 2025, 11(1): 50-56.
|
| 5. |
孟緯鈺, 張丞, 吳昌哲, 等. 經顱電刺激用于深腦刺激的研究進展. 生物醫學工程學雜志, 2023, 40(5): 1005-1011.
|
| 6. |
Yang D, Wang Q, Xu C, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: a randomized, double-blind, sham-controlled, and three-arm parallel multicenter study. Brain Stimul, 2020, 13(1): 109-116.
|
| 7. |
Yang D, Ma R, Yang N, et al. Repeated long sessions of transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: an open-label extension study. Epilepsy Behav, 2022, 135: 108876.
|
| 8. |
Lin L C, Ouyang C S, Chiang C T, et al. Cumulative effect of transcranial direct current stimulation in patients with partial refractory epilepsy and its association with phase lag index-a preliminary study. Epilepsy Behav, 2018, 84: 142-147.
|
| 9. |
謝旭, 王敏敏, 張韶岷. 一種高效可操作的經顱電刺激電極優化方法. 生物醫學工程學雜志, 2024, 41(4): 724-731.
|
| 10. |
Santos Ferreira I, Teixeira Costa B, Lima Ramos C, et al. Searching for the optimal tDCS target for motor rehabilitation. J Neuroeng Rehabil, 2019, 16(1): 90.
|
| 11. |
Salehinejad M A, Ghanavati E, Glinski B, et al. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav, 2022, 12(9): e2724.
|
| 12. |
潘鶴, 丁鵬, 王帆, 等. 雙向閉環運動想象腦機接口主動康復訓練系統的康復功效評價方法. 生物醫學工程學雜志, 2025, 42(3): 1-7.
|
| 13. |
Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131(Pt 7): 1818-1830.
|
| 14. |
McGrath H, Mandel M, Sandhu M R S, et al. Optimizing the surgical management of MRI-negative epilepsy in the neuromodulation era. Epilepsia Open, 2022, 7(1): 151-159.
|
| 15. |
魏玉烜, 王旭, 江海騰, 等. 腦源成像技術及其應用研究進展. 中國科學: 技術科學, 2024, 54(2): 196-224.
|
| 16. |
Van Veen B D, van Drongelen W, Yuchtman M, et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng, 1997, 44(9): 867-880.
|
| 17. |
Fuchs M, Wagner M, K?hler T, et al. Linear and nonlinear current density reconstructions. J Clin Neurophysiol, 1999, 16(3): 267-295.
|
| 18. |
Pascual-Marqui R D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol, 2002, 24(Suppl D): 5-12.
|
| 19. |
張楊松, 夏敏, 陳科, 等. 穩態視覺誘發電位頻率識別算法研究進展. 生物醫學工程學雜志, 2022, 39(1): 192-197.
|
| 20. |
陶怡, 徐維維, 朱家林, 等. 采用源空間套索分析和卷積神經網絡方法的高頻腦電動作模式識別方法. 西安交通大學學報, 2024, 58(1): 187-196.
|
| 21. |
Liu Y, Su H, Li C. Effect of inverse solutions, connectivity measures, and node sizes on EEG source network: a simultaneous EEG study. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 2644-2653.
|
| 22. |
Liu Y, Li C. Localizing targets for neuromodulation in drug-resistant epilepsy using intracranial EEG and computational model. Front Physiol, 2022, 13: 1015838.
|
| 23. |
Benjamin O, Fitzgerald T H, Ashwin P, et al. A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J Math Neurosci, 2012, 2(1): 1.
|
| 24. |
黃保強, 李春勝. 基于癲癇網絡動態重構與虛擬切除的致癇區定位研究. 生物醫學工程學雜志, 2022, 39(6): 1165-1172.
|
| 25. |
Sinha N, Dauwels J, Kaiser M, et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain, 2017, 140(2): 319-332.
|
| 26. |
Li C, Su H, Liu Y. Predicting surgical outcome in patients with drug-resistant epilepsy using autoregressive connectivity and virtual resection. IEEE J Biomed Health Inform, 2025, 29(3): 2199-2209.
|
| 27. |
Jirsa V K, Stacey W C, Quilichini P P, et al. On the nature of seizure dynamics. Brain, 2014, 137(Pt 8): 2210-2230.
|
| 28. |
Hosseini S A H, Sohrabpour A, He B. Electromagnetic source imaging using simultaneous scalp EEG and intracranial EEG: an emerging tool for interacting with pathological brain networks. Clin Neurophysiol, 2018, 129(1): 168-187.
|
| 29. |
Tadel F, Baillet S, Mosher J C, et al. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci, 2011, 2011: 879716.
|
| 30. |
Franaszczuk P J, Blinowska K J, Kowalczyk M. The application of parametric multichannel spectral estimates in the study of electrical brain activity. Biol Cybern, 1985, 51(4): 239-247.
|
| 31. |
Vinck M, Oostenveld R, van Wingerden M, et al. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, 2011, 55(4): 1548-1565.
|
| 32. |
Trébuchon A, Chauvel P. Electrical stimulation for seizure induction and functional mapping in Stereoelectroencephalography. J Clin Neurophysiol, 2016, 33(6): 511-521.
|
| 33. |
Sun R, Sohrabpour A, Worrell G A, et al. Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics. Proc Natl Acad Sci U S A, 2022, 119(31): e2201128119.
|
| 34. |
Serafini R, Loeb J A. Enhanced slow waves at the periphery of human epileptic foci. Clin Neurophysiol, 2015, 126(6): 1117-1123.
|
| 35. |
Wagner M, Fuchs M, Kastner J. SWARM: sLORETA-weighted accurate minimum norm inverse solutions. International Congress, 2007, 1300: 185-188.
|
| 36. |
Proix T, Jirsa V K, Bartolomei F, et al. Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat Commun, 2018, 9(1): 1088.
|
| 37. |
Jansen B H, Rit V G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern, 1995, 73(4): 357-366.
|