- 1. Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China;
- 2. CASIC-CQC Software Testing and Assessment Technology (Beijing) Co., Ltd, Beijing 100195, P. R. China;
- 3. Tianjin Key Laboratory of Neuromodulation and Neurorepair, Tianjin 300192, P. R. China;
The rehabilitation of motor dysfunction following stroke remains a major clinical challenge, underscoring the urgent need to develop novel therapeutic strategies to improve functional recovery in patients. Brain-computer interface (BCI) technology has emerged as a cutting-edge approach in neurorehabilitation, demonstrating significant potential for motor function restoration. Transcranial electrical stimulation (tES), a non-invasive neuromodulation technique, can promote neuroplasticity by regulating cortical excitability. In recent years, studies have begun to explore the combination of BCI with tES to synergistically enhance neural remodeling within the central nervous system. This integrated multi-technology strategy is increasingly becoming a key focus in the field of neurorehabilitation. This review systematically summarized recent advances in tES-BCI integrated systems for neurorehabilitation, with a particular emphasis on widely adopted BCI paradigms and tES parameter configurations and stimulation modalities. Based on a comprehensive synthesis of existing evidence, this review summarizes the efficacy of this combined intervention strategy in rehabilitating upper and lower limb motor functions following stroke, highlights the methodological limitations and clinical translation challenges present in current research, and aims to provide insights for mechanistic exploration, system optimization, and clinical translation of integrated BCI-tES technology.
Citation: WANG Yichun, LI Wenwen, CHEN Xiaogang. A review of noninvasive brain-computer interfaces combined with transcranial electrical stimulation for neural rehabilitation. Journal of Biomedical Engineering, 2026, 43(1): 178-185, 192. doi: 10.7507/1001-5515.202509061 Copy
Copyright ? the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
| 1. |
|
| 2. |
|
| 3. |
|
| 4. |
|
| 5. |
|
| 6. |
|
| 7. |
|
| 8. |
|
| 9. |
|
| 10. |
|
| 11. |
|
| 12. |
|
| 13. |
|
| 14. |
|
| 15. |
|
| 16. |
|
| 17. |
|
| 18. |
|
| 19. |
|
| 20. |
|
| 21. |
|
| 22. |
|
| 23. |
|
| 24. |
|
| 25. |
|
| 26. |
|
| 27. |
|
| 28. |
|
| 29. |
|
| 30. |
|
| 31. |
|
| 32. |
|
| 33. |
|
| 34. |
|
| 35. |
|
| 36. |
|
| 37. |
|
| 38. |
|
| 39. |
|
| 40. |
|
| 41. |
|
| 42. |
|
| 43. |
|
| 44. |
|
| 45. |
|
| 46. |
|
| 47. |
|
| 48. |
|
| 49. |
|
| 50. |
|
| 51. |
|
| 52. |
|
| 53. |
|
| 54. |
|
| 55. |
|
| 56. |
|
| 57. |
|
| 58. |
|
| 59. |
|
| 60. |
|
| 61. |
|
| 62. |
|
| 63. |
|
| 64. |
|
| 65. |
|
- 1.
.中華醫學會神經病學分會, 中華醫學會神經病學分會腦血管病學組 . 中國重癥卒中管理指南2024. 中華神經科雜志,2024 ,57 (7 ):698 -714 . - 2.
.Feigin V L, Stark B A, Johnson C O, et al . Global, regional, and national burden of stroke and its risk factors, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol,2023 ,23 (10 ):973 -1003 . - 3.
.Belkacem A N, Jamil N, Khalid S, et al . On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci,2023 ,17 :1085173 . - 4.
.Grigoryan K A, Karsten M, Matthias W, et al . Short-term BCI intervention enhances functional brain connectivity associated with motor performance in chronic stroke. Neuroimage Clin,2025 ,46 :2213 -1582 . - 5.
.Saiote C, Turi Z, Paulus W, et al . Combining functional magnetic resonance imaging with transcranial electrical stimulation. Front Hum Neurosci,2013 ,7 :435 . - 6.
.Lu R R, Pang Z, Gao T, et al . Multisensory BCI promotes motor recovery via high-order network-mediated interhemispheric integration in chronic stroke. BMC Med,2025 ,23 :380 . - 7.
Won K, Kim H, Gwon D, et al. Can vibrotactile stimulation and tDCS help inefficient BCI users? J Neuroeng Rehabil, 2023, 20: 60. . - 8.
.Lo B W Y, Fukuda H . Advances in ischemic stroke treatment: current and future therapies. Neurol Ther,2025 ,14 (5 ):1783 -1796 . - 9.
.Isaev M, Bobrov P, Mokienko O, et al . Hemodynamic response asymmetry during motor imagery in stroke patients: a novel NIRS-BCI assessment approach. Sensors,2025 ,25 (16 ):5040 . - 10.
.王雪淞, 汪月, 徐巖, 等 . 腦機接口聯合不同療法治療腦卒中患者肢體功能障礙: 效果與機制分析. 中國組織工程研究,2025 ,29 (30 ):6538 -6546 . - 11.
.Meng H, Houston M, Zhang Y, et al . Exploring the prospects of transcranial electrical stimulation (tES) as a therapeutic intervention for post-stroke motor recovery: a narrative review. Brain Sci,2024 ,14 (4 ):322 . - 12.
.Wei P, He W, Zhou Y, et al . Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation. IEEE Trans Neural Syst Rehabil Eng,2013 ,21 (3 ):404 -415 . - 13.
.Agnihotri S K, Cai J . Investigating the effects of transcranial alternating current stimulation on cortical oscillations and network dynamics. Brain Sci,2024 ,14 :8 . - 14.
.Xie J, Peng M, Lu J, et al . Enhancement of event-related desynchronization in motor imagery based on transcranial electrical stimulation. Front Hum Neurosci,2021 ,15 :635351 . - 15.
.Baxter B S, Edelman B J, Nesbitt N, et al . Sensorimotor rhythm BCI with simultaneous high definition-transcranial direct current stimulation alters task performance. Brain Stimul,2016 ,9 :834 -841 . - 16.
.Liu H, Kumar D S, Alawieh H, et al . Personalized μ-transcranial alternating current stimulation improves online brain-computer interface control. J Neural Eng,2025 ,22 (1 ):016037 . - 17.
.Lima J P S, Silva L A, Delisle-Rodriguez D, et al . Unraveling transformative effects after tDCS and BCI intervention in chronic post-stroke patient rehabilitation-an alternative treatment design study. Sensors,2023 ,23 :9302 . - 18.
.鄭晨光, 劉洋, 肖曉琳, 等 . 高頻穩態視覺誘發電位腦-機接口研究進展. 生物醫學工程學雜志,2023 ,40 (1 ):155 -162 . - 19.
.Haslacher D, Nasr K, Robinson S E, et al . A set of electroencephalographic (EEG) data recorded during amplitude-modulated transcranial alternating current stimulation (AM-tACS) targeting 10-Hz steady-state visually evoked potentials (SSVEP). Data Brief,2021 ,36 :2352 -3409 . - 20.
.Kok A . On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology,2001 ,38 (3 ):557 -577 . - 21.
.Zhang S, Cui H, Li Y, et al . Improving SSVEP-BCI performance through repetitive anodal tDCS-based neuromodulation: insights from fractal EEG and brain functional connectivity. IEEE Trans Neural Syst Rehabil Eng,2024 ,32 :1647 -1656 . - 22.
.Zhang S, Gao X, Cui H, et al . Transcranial direct current stimulation-based neuromodulation improves the performance of brain-computer interfaces based on steady-state visual evoked potential. IEEE Trans Neural Syst Rehabil Eng,2023 ,31 :1364 -1373 . - 23.
.Liu B, Yan X, Chen X, et al . tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng,2021 ,18 (6 ):066042 . - 24.
.Voegtle A, Reichert C, Hinrichs H, et al . Repetitive anodal TDCS to the frontal cortex increases the P300 during working memory processing. Brain Sci,2022 ,12 :1545 . - 25.
.Popp F, Dallmer-Zerbe I, Philipsen A, et al . Challenges of P300 modulation using transcranial alternating current stimulation (tACS). Front Psychol,2019 ,10 :476 . - 26.
.Izzidien A, Ramaraju S, Roula M A, et al . Effect of anodal-tDCS on event-related potentials: a controlled study. Biomed Res Int,2016 ,2016 :1584947 . - 27.
.Li Z, Zhang R, Li W, et al . Enhancement of hybrid BCI system performance based on motor imagery and SSVEP by transcranial alternating current stimulation. IEEE Trans Neural Syst Rehabil Eng,2024 ,32 :3222 -3230 . - 28.
.Narmashiri A, Akbari F . The effects of transcranial direct current stimulation (tDCS) on the cognitive functions: a systematic review and meta-analysis. Neuropsychol Rev,2025 ,35 (1 ):126 -152 . - 29.
.關龍舟, 魏云, 李小俚, 等 . 經顱電刺激—一項具有發展前景的腦刺激技術. 中國醫療設備,2015 ,30 (11 ):1 -5, 9 . - 30.
.蔡宏偉, 羅志增, 史紅斐, 等 . 經顱直流電刺激對人體平衡腦網絡特征的影響研究. 中國生物醫學工程學報,2023 ,42 (4 ):394 -402 . - 31.
.Zheng Y, Gao X . Functional connectivity analysis of steady-state visual evoked potentials. Neurosci Lett,2011 ,499 (3 ):199 -203 . - 32.
.Zhou Z X, Wan B K, Ming D, et al . A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action. J Neural Eng,2010 ,7 (4 ):046008 . - 33.
He W, Wei P, Zhou Y, et al. Modulation effect of transcranial direct current stimulation on phase synchronization in motor imagery brain-computer interface// Annu Int Conf IEEE Eng Med Biol Soc. Chicago: IEEE, 2014: 1270-1273. . - 34.
.Sawai S, Murata S, Fujikawa S, et al . Effects of neurofeedback training combined with transcranial direct current stimulation on motor imagery: a randomized controlled trial. Front Neurosci,2023 ,17 :1148336 . - 35.
.He Q, Zhu X, Fang F, et al . Enhancing visual perceptual learning using transcranial electrical stimulation: transcranial alternating current stimulation outperforms both transcranial direct current and random noise stimulation. J Vis,2023 ,23 (14 ):2 . - 36.
.Ren C, Pagali S R, Wang Z, et al . Transcranial electrical stimulation in treatment of depression: a systematic review and meta-analysis. JAMA Netw Open,2025 ,8 :e2516459 . - 37.
.Tavakoli A V, Yun K . Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front Cell Neurosci,2017 ,11 :214 . - 38.
.Corbet T, Iturrate I, Pereira M, et al . Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance. Neuroimage,2018 ,176 :268 -276 . - 39.
.Zhang L, Chen L, Wang Z, et al . Enhancing motor imagery performance by antiphasic 10 Hz transcranial alternating current stimulation. IEEE Trans Neural Syst Rehabil Eng,2023 ,31 :2747 -2757 . - 40.
Duan R, Zhang D. Effects of transcranial alternating current stimulation on performance of SSVEP-based brain-computer interface// 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). Angkor Wat: IEEE, 2016: 539-542. . - 41.
.Cui J, Yu W, Hu L, et al . The effect of transcranial random noise stimulation (tRNS) over bilateral parietal cortex in visual cross-modal conflicts. Sci Rep,2025 ,15 (1 ):4980 . - 42.
.Urwicz L, Marchesotti S, Adrian G, et al . The effects on tACS and tRNS on language function: a literature review. Brain Lang,2025 ,269 :105630 . - 43.
.Sprugnoli G, Rossi S, Liew S L, et al . Enhancement of semantic integration reasoning by tRNS. Cogn Affect Behav Neurosci,2021 ,21 :736 -746 . - 44.
Potok W, Post A, Beliaeva V, et al. Modulation of visual contrast sensitivity with tRNS across the visual system, evidence from stimulation and simulation. eNeuro, 2023, 10(6): ENEURO. 0177-22.2023. . - 45.
.Moret B, Donato R, Nucci M, et al . Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci Rep,2019 ,9 (1 ):15150 . - 46.
.Nejati V, Dehghan M, Shahidi S, et al . Transcranial random noise stimulation (tRNS) improves hot and cold executive functions in children with attention deficit-hyperactivity disorder (ADHD). Sci Rep,2024 ,14 (1 ):7600 . - 47.
.Wu P, Huang C, Lee S, et al . The distinct and potentially conflicting effects of tDCS and tRNS on brain connectivity, cortical inhibition, and visuospatial memory. Front Hum Neurosci,2024 ,18 :1415904 . - 48.
.Mehrpour S . A review about synergistic effects of transcranial direct current stimulation (tDCS) in combination with motor imagery (MI)-based brain computer interface (BCI) on post-stroke rehabilitation. Res Biomed Eng,2024 ,40 :43 -67 . - 49.
.Hong X, Lu Z K, Teh I, et al . Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Sci Rep,2017 ,7 (1 ):9222 . - 50.
.袁艷秋, 張秀芳, 陳杰, 等 . 經顱電刺激技術聯合腦機接口技術對腦卒中患者認知功能及上肢功能的影響. 實用心腦肺血管病雜志,2024 ,32 (4 ):71 -75 . - 51.
.Naros G, Gharabaghi A . Physiological and behavioral effects of β-tACS on brain self-regulation in chronic stroke. Brain Stimul,2017 ,10 :251 -259 . - 52.
Bastos-Filho T. Introduction to non-invasive EEG-based brain-computer interfaces for assistive technologies. 1st ed. Boca Raton: CRC Press, 2020. . - 53.
Bastos-Filho T, González-Cely X, Mehrpour S, et al. Post-stroke upper-and lower-limb rehabilitation through brain-computer interface, robotic devices and transcranial alternating current & functional electrical stimulations// Carranza A, Bustamante M. Proceedings of the 12th International Conference of Control Dynamic Systems, and Robotics, CDSR 2025. Ottawa: Avestia Publishing, 2025: 12. . - 54.
.Zhang S, Qin Y, Wang J, et al . Noninvasive electrical stimulation neuromodulation and digital brain technology: a review. Biomedicines,2023 ,11 (6 ):1513 . - 55.
.Brunoni A R, Nitsche M A, Bolognini N, et al . Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul,2012 ,5 (3 ):175 -195 . - 56.
.Poreisz C, Boros K, Antal A, et al . Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull,2007 ,72 (4-6 ):208 -214 . - 57.
.Bjeki J, ?ivanovi M, Stankovi M, et al . The subjective experience of transcranial electrical stimulation: a within-subject comparison of tolerability and side effects between tDCS, tACS, and otDCS. Front Hum Neurosci,2024 ,18 :1468538 . - 58.
Allison B Z, Neuper C. Could anyone use a BCI?// Tan D, Nijholt A. Brain-computer interfaces. London: Springer, 2010. . - 59.
.Dickhaus T, Sannelli C, Müller K R, et al . Predicting BCI performance to study BCI illiteracy. BMC Neurosci,2009 ,10 (1 ):84 . - 60.
.Douibi K, Le Bars S, Lemontey A, et al . Toward EEG-based BCI applications for industry 4. 0: challenges and possible applications. Front Hum Neurosci,2021 ,15 :705064 . - 61.
.Pan H, Ding P, Wang F, et al . Comprehensive evaluation methods for translating BCI into practical applications: usability, user satisfaction and usage of online BCI systems. Front Hum Neurosci,2024 ,18 :1429130 . - 62.
.Hu H, Wang Z Y, Zhao Y, et al . A survey on brain-computer interface-inspired communications: opportunities and challenges. IEEE Commun Surv Tut,2025 ,27 :108 -139 . - 63.
Ang K K, Guan C T, Phua K S, et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil, 2015, 96(3 Suppl): S79-S87. . - 64.
.Hu M, Cheng H J, Ji F, et al . Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: a pilot study. Front Hum Neurosci,2021 ,15 :692304 . - 65.
.Zhang M, Yu W, Fan J, et al . Efficacy of kinesthetic motor imagery based brain computer interface combined with tDCS on upper limb function in subacute stroke. Sci Rep,2025 ,15 (1 ):11829 .

