| 1. |
Zhai P, Xuan X, Li H, et al. Boron and nitrogen co-doped vertical graphene electrodes for scalp electroencephalogram recording. Carbon, 2022, 189: 71-80.
|
| 2. |
Xu Z, Khazaee M, Truong N D, et al. A leadless power transfer and wireless telemetry solutions for an endovascular electrocorticography. Journal of Neural Engineering, 2024, 21(6): 066009.
|
| 3. |
Ozturk M, Telkes I, Jimenez-Shahed J, et al. Randomized, double-blind assessment of LFP versus SUA guidance in STN-DBS lead implantation: a pilot study. Frontiers in Neuroscience, 2020, 14: 611.
|
| 4. |
Siribunyaphat N, Punsawad Y. Brain-computer interface based on steady-state visual evoked potential using quick-response code pattern for wheelchair control. Sensors (Basel), 2023, 23(4): 2069.
|
| 5. |
Luo J, Xue N, Chen J. A review: research progress of neural probes for brain research and brain-computer interface. Biosensors (Basel), 2022, 12(12): 1167.
|
| 6. |
Jiao Y, Lei M, Zhu J, et al. Advances in electrode interface materials and modification technologies for brain-computer interfaces. Biomater Transl, 2023, 4(4): 213-233.
|
| 7. |
Dong R, Wang L, Li Z, et al. Stretchable, self-rolled, microfluidic electronics enable conformable neural interfaces of brain and vagus neuromodulation. ACS Nano, 2024, 18(2): 1702-1713.
|
| 8. |
Lin Z, Marin-llobet A, Baek J, et al. Spike sorting AI agent. bioRxiv, 2025, DOI: 10.1101/2025.02.11.637754.
|
| 9. |
Merken L, Schelles M, Ceyssens F, et al. Thin flexible arrays for long-term multi-electrode recordings in macaque primary visual cortex. Journal of Neural Engineering, 2022, 19(6): 066039.
|
| 10. |
Apollo N V, Murphy B, Prezelski K, et al. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. Journal of Neural Engineering, 2020, 17(4): 041002.
|
| 11. |
Tang C, Wang P, Li Z, et al. Neural functional rehabilitation: exploring neuromuscular reconstruction technology advancements and challenges. Neural Regeneration Research, 2026, 21(1): 173-186.
|
| 12. |
Davis K C, Meschede-krasa B, Cajigas I, et al. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2022, 19(1): 53.
|
| 13. |
Peksa J, Mamchur D. State-of-the-art on brain-computer interface technology. Sensors (Basel), 2023, 23(13): 6001.
|
| 14. |
Waisberg E, Ong J, Lee A G. Ethical considerations of neuralink and brain-computer interfaces. Ann Biomed Eng, 2024, 52(8): 1937-1939.
|
| 15. |
Edelman B J, Zhang S, Schalk G, et al. Non-invasive brain-computer interfaces: state of the art and trends. IEEE Rev Biomed Eng, 2025, 18: 26-49.
|
| 16. |
Duan Y, Wang S, Yuan Q, et al. Long-term flexible neural interface for synchronous recording of cross-regional sensory processing along the olfactory pathway. Small, 2023, 19(29): e2205768.
|
| 17. |
Liu X Y, Wang W L, Liu M, et al. Recent applications of EEG-based brain-computer-interface in the medical field. Mil Med Res, 2025, 12(1): 14.
|
| 18. |
Rosenfeld J V. Neurosurgery and the brain-computer interface. Adv Exp Med Biol, 2024, 1462: 513-527.
|
| 19. |
Tang J, Lebel A, Jain S, et al. Semantic reconstruction of continuous language from non-invasive brain recordings. Nat Neurosci, 2023, 26(5): 858-866.
|
| 20. |
Xiang Z, Yen S C, Xue N, et al. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. Journal of Micromechanics and Microengineering, 2014, 24(6): 065015.
|
| 21. |
Li J, Wang F, Huang H, et al. A novel semi-supervised meta learning method for subject-transfer brain-computer interface. Neural Netw, 2023, 163: 195-204.
|
| 22. |
Ganji M, Kaestner E, Hermiz J, et al. Development and translation of PEDOT: PSS microelectrodes for intraoperative monitoring. Advanced Functional Materials, 2018, 28(12): 1700232.
|
| 23. |
Chen N, Luo B, Patil A C, et al. Nanotunnels within poly(3,4-ethylenedioxythiophene)-carbon nanotube composite for highly sensitive neural interfacing. Acs Nano, 2020, 14(7): 8059-8073.
|
| 24. |
Zhu M, Wang H, Li S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Advanced Healthcare Materials, 2021, 10(17): e2100646.
|
| 25. |
Zabcikova M, Koudelkova Z, Jasek R, et al. Recent advances and current trends in brain-computer interface research and their applications. Int J Dev Neurosci, 2022, 82(2): 107-123.
|
| 26. |
Fiedler P, Fonseca C, Supriyanto E, et al. A high-density 256-channel cap for dry electroencephalography. Human Brain Mapping, 2022, 43(4): 1295-1308.
|
| 27. |
Liu X, Liu J, Lin S, et al. Hydrogel machines. Materials Today, 2020, 36: 102-124.
|
| 28. |
Canny E, Vansteensel M J, van der Salm S M A, et al. Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome. J Neuroeng Rehabil, 2023, 20(1): 157.
|
| 29. |
Li R, Zhao X, Wang Z, et al. A novel hybrid brain-computer interface combining the illusion-induced VEP and SSVEP. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 4760-4772.
|
| 30. |
Vansteensel M J, Branco M P, Leinders S, et al. Methodological recommendations for studies on the daily life implementation of implantable communication-brain-computer interfaces for individuals with locked-in syndrome. Neurorehabilitation and Neural Repair, 2022, 36(10-11): 666-677.
|
| 31. |
Zheng Y Q, Liu Y, Zhong D, et al. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373(6550): 88-94.
|
| 32. |
Ran X, Chen W, Yvert B, et al. A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding. Comput Biol Med, 2022, 148: 105871.
|
| 33. |
Henderson F C, Tuchman K. Angiogenic cell precursors and neural cell precursors in service to the brain-computer interface. Cells, 2025, 14(15): 1163.
|
| 34. |
Siviero I, Menegaz G, Storti S F. Functional connectivity and feature fusion enhance multiclass motor-imagery brain-computer interface performance. Sensors (Basel), 2023, 23(17): 7520.
|
| 35. |
Kim M G, Lim H, Lee H S, et al. Brain-computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients. J Neural Eng, 2022, 19(3): 036039.
|
| 36. |
Awuah W A, Ahluwalia A, Darko K, et al. Bridging minds and machines: the recent advances of brain-computer interfaces in neurological and neurosurgical applications. World Neurosurg, 2024, 189: 138-153.
|
| 37. |
Palumbo A, Ielpo N, Calabrese B. An FPGA-embedded brain-computer interface system to support individual autonomy in locked-in individuals. Sensors (Basel), 2022, 22(1): 318.
|
| 38. |
Caria A. Towards predictive communication: the fusion of large language models and brain-computer interface. Sensors (Basel), 2025, 25(13): 3987.
|
| 39. |
Gok S, Sahin M. Prediction of forelimb EMGs and movement phases from corticospinal signals in the rat during the reach-to-pull task. International Journal of Neural Systems, 2019, 29(7): 1950009.
|
| 40. |
Chen Y, Peng Y, Tang J, et al. EEG-based affective brain-computer interfaces: recent advancements and future challenges. J Neural Eng, 2025, 22(3): 031004.
|
| 41. |
Rajpura P, Cecotti H, Kumar Meena Y. Explainable artificial intelligence approaches for brain-computer interfaces: a review and design space. J Neural Eng, 2024, 21(4): 041003.
|