| 1. |
Augustin G, Antabak A, Davila S. The periosteum. Part 1: Anatomy, histology and molecular biology. Injury, 2007, 38(10): 1115-1130.
|
| 2. |
Lin Z, Fateh A, Salem DM, et al. Periosteum: biology and applications in craniofacial bone regeneration. J Dent Res, 2014, 93(2): 109-116.
|
| 3. |
Colno C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res, 2009, 24(2): 274-282.
|
| 4. |
Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells, 2014, 6(3): 266-277.
|
| 5. |
Nakahara K, Haga-Tsujimura M, Iizuka T, et al. Periosteum-Induced Bone Formation by Distraction Osteogenesis: Histologic and Microcomputed Tomography Analysis. Int J Oral Maxillofac Implants, 2016, 31(4): 785-792.
|
| 6. |
Takushima A, Kitano Y, Harii K. Osteogenic potential of cultured periosteal cells in a distracted bone gap in rabbits. J Surg Res, 1998, 78(1): 68-77.
|
| 7. |
Hoffman MD, Benoit DS. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Biomaterials, 2015, 52: 426-440.
|
| 8. |
Yiannakopoulos CK, Kanellopoulos AD, Trovas GP, et al. The biomechanical capacity of the periosteum in intact long bones. Arch Orthop Trauma Surg, 2008, 128(1): 117-120.
|
| 9. |
拓振合, 趙琳, 王栓科, 等. 組織工程骨膜及脫蛋白骨輔助支架修復兔橈骨大段骨缺損. 中國修復重建外科雜志, 2014, 28(4): 511-516.
|
| 10. |
Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med, 2012, 1(6): 480-491.
|
| 11. |
Hoffman MD, Xie C, Zhang X, et al. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials, 2013, 34(35): 8887-8898.
|
| 12. |
Colnot C, Zhang X, Knothe Tate ML, et al. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res, 2012, 30(12): 1869-1878.
|
| 13. |
Fujio M, Yamamoto A, Ando Y, et al. Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal ltissue regeneration through the recruitment of endothelial precursors. Bone, 2011, 49(4): 693-700.
|
| 14. |
Zhang WB, Zheng LW, Chua DT, et al. Expression of bone morphogenetic protein, vascular endothelial growth factor, and basic fibroblast growth factor in irradiated mandibles during distraction osteogenesis. J Oral Maxillofac Surg, 2011, 69(11): 2860-2871.
|
| 15. |
van Gastel N, Torrekens S, Roberts SJ, et al. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells, 2012, 30(11): 2460-2471.
|
| 16. |
Choi IH, Chung CY, Cho TJ, et al. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci, 2002, 17(4): 435-447.
|
| 17. |
Casap N, Venezia NB, Wilensky A, et al. VEGF facilitates periosteal distraction-induced osteogenesis in rabbits: a micro-computerized tomography study. Tissue Eng Part A, 2008, 14(2): 247-253.
|
| 18. |
Hoffman MD, Benoit DS. Emerging ideas: Engineering the periosteum: revitalizing allografts by mimicking autograft healing. Clin Orthop Relat Res, 2013, 471(3): 721-726.
|
| 19. |
Schmidt BL, Kung L, Jones C, et al. Induced osteogenesis by periosteal distraction. J Oral Maxillofac Surg, 2002, 60(10): 1170-1175.
|
| 20. |
劉亞, 宋慶高, 尹鑫海, 等. 下頜骨骨膜牽張成骨的實驗研究. 遵義醫學院學報, 2008, 31(2): 30-32.
|
| 21. |
任志勇, 李濤, 張維彬, 等. 兔脛骨干骺端骨膜外截骨對延長區成骨作用的影響. 中國矯形外科雜志, 2015, 23(2): 150-155.
|
| 22. |
黎潤光, 邵景范, 魏明發. 機械牽張應力對成骨細胞的影響研究進展. 中國矯形外科雜志, 2006, 14(6): 457-460.
|
| 23. |
Weyts FA, Bosmans B, Niesing R, et al. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int, 2003, 72(4): 505-512.
|
| 24. |
Winter LC, Walboomers XF, Bumgardner JD, et al. Intermittent versus continuous stretching effects on osteoblast-like cells in vitro. J Biomed Mater Res A, 2003, 67(4): 1269-1275.
|
| 25. |
孫溪饒. 牽引速率及頻率對牽張成骨的影響. 中國組織工程研究與臨床康復, 2010, 14(41): 7727-7730.
|
| 26. |
Choi IH, Shim JS, Seong SC, et al. Effect of the distraction rate on the activity of the osteoblast lineage in distraction osteogenesis of rat’s tibia. Immunostaining study of the proliferating cell nuclear antigen, osteocalcin, and transglutaminase C. Bull Hosp Jt Dis, 1997, 56(1): 34-40.
|
| 27. |
Moore DC, Leblanc CW, Müller R, et al. Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: a micro-tomographic imaging study. J Orthop Res, 2003, 21(3): 489-496.
|
| 28. |
Kesemenli CC, Subasi M, Kaya H, et al. The effects of electromagnetic field on distraction osteogenesis. Yonsei Med J, 2003, 44(3): 385-391.
|
| 29. |
詹玉林, 侯國柱, 安智全, 等. 兔骨缺損模型中骨膜對骨形態發生蛋白-2 分泌量及骨愈合影響的實驗研究. 中華創傷骨科雜志, 2013, 15(10): 884-888.
|
| 30. |
Issa JP, Nascimento C, Lamano T, et al. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles. Clin Oral Implants Res, 2009, 20(11): 1286-1292.
|