| 1. |
Elsoe R, Larsen P, Nielsen NP, et al. Population-based epidemiology of tibial plateau fractures. Orthopedics, 2015, 38(9): e780-e786.
|
| 2. |
Lachiewicz PF, Funcik T. Factors influencing the results of open reduction and internal fixation of tibial plateau fractures. Clin Orthop Relat Res, 1990, (259): 210-215.
|
| 3. |
Hsu CJ, Chang WN, Wong CY. Surgical treatment of tibial plateau fracture in elderly patients. Arch Orthop Trauma Surg, 2001, 121(1-2): 67-70.
|
| 4. |
Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res, 1993, (292): 87-100.
|
| 5. |
McNamara IR, Smith TO, Shepherd KL, et al. Surgical fixation methods for tibial plateau fractures. Cochrane Database Syst Rev, 2015, (9): CD009679.
|
| 6. |
Heikkil? JT, Kukkonen J, Aho AJ, et al. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci Mater Med, 2011, 22(4): 1073-1080.
|
| 7. |
晏兆魁, 梁羽, 方躍, 等. 鎳鈦三維記憶合金網復合自體骨治療犬脛骨平臺塌陷骨折模型生物力學試驗. 中國修復重建外科雜志, 2018, 32(6): 722-725.
|
| 8. |
Wheeler DL, Cross AR, Eschbach EJ, et al. Grafting of massive tibial subchondral bone defects in a caprine model using beta-tricalcium phosphate versus autograft. J Orthop Trauma, 2005, 19(2): 85-91.
|
| 9. |
王巖, 譯. 坎貝爾骨科手術學. 11 版. 北京: 人民軍醫出版社, 2009: 2472-2485.
|
| 10. |
Morrison JB. Bioengineering analysis of force actions transmitted by the knee joint. Bio Med, 1968, 3: 164-170.
|
| 11. |
Larsson S, Hannink G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury, 2011, 42(Suppl 2): S30-S34.
|
| 12. |
Cornell CN. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am, 1999, 30(4): 591-598.
|
| 13. |
Goff T, Kanakaris NK, Giannoudis PV. Use of bone graft substitutes in the management of tibial plateau fractures. Injury, 2013, 44(Suppl 1): S86-S94.
|
| 14. |
Sevcikova J, Pavkova Goldbergova M. Biocompatibility of NiTi alloys in the cell behaviour. Biometals, 2017, 30(2): 163-169.
|
| 15. |
Li Y, Wang F, Hu P, et al. Feasibility of shape-memory Ni/Ti alloy wire containing tube elevators for transcrestal detaching maxillary sinus mucosa: Ex vivo study. Cell Physiol Biochem, 2016, 40(5): 944-952.
|
| 16. |
王成健, 孟增東, 張玉勤, 等. 鎳鈦形狀記憶合金的生物相容性研究進展. 生物骨科材料與臨床研究, 2016, 13(1): 65-68, 72.
|
| 17. |
林斌, 王巖, 趙衛東, 等. 鎳鈦記憶合金網球治療股骨頭缺血性壞死的生物力學及三維有限元分析. 中國矯形外科雜志, 2003, 11(15): 1059-1062.
|
| 18. |
趙定麟, 張文明. 形狀記憶合金椎間關節用于頸椎病前路減壓術. 中華外科雜志, 1984, 22(7): 410-412.
|
| 19. |
呂曉華, 陳根元, 曲國欣, 等. 鎳鈦形態記憶合金環抱器與重建鋼板置入內固定治療尺橈骨中段骨折的比較. 中國組織工程研究與臨床康復, 2010, 14(52): 9827-9830.
|
| 20. |
劉欣偉, 王攀峰, 付青格, 等. 動力髖螺釘結合記憶合金弓齒釘治療股骨粗隆下 SeinsheimerⅤ型粉碎性骨折. 中國骨傷, 2010, 23(4): 288-290.
|
| 21. |
Liu X, Xu S, Zhang C, et al. Application of a shape-memory alloy internal fixator for treatment of acetabular fractures with a follow-up of two to nine years in China. Int Orthop, 2010, 34(7): 1033-1040.
|
| 22. |
Su JC, Liu XW, Yu BQ, et al. Shape memory Ni-Ti alloy swan-like bone connector for treatment of humeral shaft nonunion. Int Orthop, 2010, 34(3): 369-375.
|