| 1. |
歐栓機, 齊勇, 孫鴻濤, 等. 經皮微創脛骨截骨橫向骨搬移術治療糖尿病足. 中國矯形外科雜志, 2018, 26(15): 1385-1389.
|
| 2. |
花奇凱, 秦泗河, 趙良軍, 等. Ilizarov 技術脛骨橫向骨搬移術治療糖尿病足. 中國矯形外科雜志, 2017, 25(4): 303-307.
|
| 3. |
王斌, 劉偉, 霍永新, 等. 股-股動脈旁路移植聯合脛骨橫向骨搬移術治療下肢動脈硬化閉塞癥或合并糖尿病足. 中國修復重建外科雜志, 2018, 32(12): 1576-1580.
|
| 4. |
鎮普祥, 陳炎, 高偉, 等. 應用 Ilizarov 技術脛骨橫向骨搬移術治療合并全身性炎癥反應綜合征的重度糖尿病足. 中國修復重建外科雜志, 2018, 32(10): 1261-1266.
|
| 5. |
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest, 2007, 117(5): 1219-1222.
|
| 6. |
Tsang MW, Wong WK, Hung CS, et al. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care, 2003, 26(6): 1856-1861.
|
| 7. |
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part Ⅱ. The influence of the rate and frequency of distraction. Clin Orthop Relat Res, 1989, (239): 263-285.
|
| 8. |
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res, 1989, (238): 249-281.
|
| 9. |
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications, 2012, 26(6): 554-561.
|
| 10. |
Stefanini MO, Wu FT, Mac GF, et al. A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst Biol, 2008, 2: 77.
|
| 11. |
Maione AG, Brudno Y, Stojadinovic O, et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng Part C Methods, 2015, 21(5): 499-508.
|
| 12. |
Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care, 2009, 18(12): 516-519.
|
| 13. |
Tiaka EK, Papanas N, Manolakis AC, et al. Epidermal growth factor in the treatment of diabetic foot ulcers: an update. Perspect Vasc Surg Endovasc Ther, 2012, 24(1): 37-44.
|
| 14. |
Tuyet HL, Nguyen Quynh TT, Vo Hoang Minh H, et al. The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J, 2009, 6(2): 159-166.
|
| 15. |
Barrientos S, Brem H, Stojadinovic O, et al. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen, 2014, 22(5): 569-578.
|
| 16. |
Shah JM, Omar E, Pai DR, et al. Cellular events and biomarkers of wound healing. Indian J Plast Surg, 2012, 45(2): 220-228.
|
| 17. |
Bai Y, Bai L, Zhou J, et al. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol, 2018, 323: 19-32.
|
| 18. |
Quinn TP, Schlueter M, Soifer SJ, et al. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2002, 282(5): L897-903.
|
| 19. |
Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type Ⅰ and type Ⅱ diabetic mice. Acta Biomater, 2018, 66: 325-334.
|
| 20. |
Virakul S, Heutz JW, Dalm VA, et al. Basic FGF and PDGF-BB synergistically stimulate hyaluronan and IL-6 production by orbital fibroblasts. Mol Cell Endocrinol, 2016, 433: 94-104.
|