| 1. |
Wu XC, Stroll SI, Lantigua D, et al. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Biomater Sci, 2019, 7(7): 2675-2685.
|
| 2. |
Dimitriou R, Mataliotakis GI, Angoules AG, et al. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury, 2011, Suppl 2: S3-S15.
|
| 3. |
萬志鵬, 蔣文濤, 王寵, 等. 三維打印 Ti-6Al-4V 合金孔洞幾何特征與空間分布研究. 生物醫學工程學雜志, 2017, 34(6): 876-882.
|
| 4. |
Hanawa T. Titanium-tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol, 2019, 7: 170.
|
| 5. |
Li Y, Ding Y, Munir K, et al. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomater, 2019, 87: 273-284.
|
| 6. |
Wang CC, Hu HX, Li ZP, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl Mater Interfaces, 2019, 11(43): 39470-39483.
|
| 7. |
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol, 2000, 2017, 73(1): 2-40.
|
| 8. |
Li RC, Deng CJ, Li XX, et al. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics, 2019, 9(21): 6300-6313.
|
| 9. |
彭建強, 易志新, 武明鑫, 等. 氧化應激活化 RAW264.7 巨噬細胞對 MC3T3-E1 成骨細胞遷移、增殖及成骨基因表達影響的實驗研究. 中國修復重建外科雜志, 2016, 30(9): 1146-1152.
|
| 10. |
Chen XN, Wang ML, Chen FY, et al. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater, 2020, 103: 318-332.
|
| 11. |
Julier Z, Park AJ, Briquez PS, et al. Promoting tissue regeneration by modulating the immune system. Acta Biomater, 2017, 53: 13-28.
|
| 12. |
Chen Z, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 2016, 19(6): 304-321.
|
| 13. |
Fraga CG. Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med, 2005, 26(4-5): 235-244.
|
| 14. |
李永樂, 何強, 范先東, 等. 人臍血對兔骨折愈合期間全血微量元素含量的影響. 中國修復重建外科雜志, 2013, 27(6): 673-679.
|
| 15. |
Mir E, Hossein-Nezhad A, Bahrami A, et al. Adequate serum copper concentration could improve bone density, postpone bone loss and protect osteoporosis in women. Iranian Journal of Public Health, 2007, 36(2): 24-29.
|
| 16. |
Djoko KY, Ong CI, Walker MJ, et al. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem, 2015, 290(31): 18954-18961.
|
| 17. |
Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother, 2003, 57(9): 386-398.
|
| 18. |
Ren L, Wong HM, Yan CH, et al. Osteogenic ability of Cu-bearing stainless steel. J Biomed Mater Res B Appl Biomater, 2015, 103(7): 1433-1444.
|
| 19. |
Liu F, Wang F, Shimizu T, et al. Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. Ceramics International, 2006, 32(5): 527-531.
|
| 20. |
Guo S, Lu YJ, Wu SQ, et al. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Mater Sci Eng C Mater Biol Appl, 2017, 72: 631-640.
|
| 21. |
Bohner M, Miron RJ. A proposed mechanism for material-induced heterotopic ossification. Materials Today, 2019, 22: 132-141.
|
| 22. |
康明, 黃杰華, 張理選, 等. 殼聚糖/胡須/磷酸鈣骨水泥復合生物材料的力學性能及對誘導多能干細胞成骨潛能的影響. 中國修復重建外科雜志, 2018, 32(7): 959-967.
|
| 23. |
鄧廉夫, 燕宇飛. 骨修復材料的研究現狀與進展. 中國修復重建外科雜志, 2018, 32(7): 815-820.
|
| 24. |
滿星云, 索海瑞, 劉家利, 等. 基于三維打印的磷酸三鈣骨組織工程支架燒結工藝研究. 生物醫學工程學雜志, 2020, 37(1): 112-118.
|
| 25. |
Chen XN, Wang J, Chen Y, et al. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J Mater Chem B, 2016, 4(13): 2280-2289.
|
| 26. |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 2019, 196: 80-89.
|
| 27. |
Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater, 2016, 31: 425-434.
|
| 28. |
Luo J, Ding X, Song W, et al. Inducing macrophages M2 polarization by dexamethasone laden mesoporous silica nanoparticles from titanium implant surface for enhanced osteogenesis. Acta Metallurgica Sinica (English Letters), 2019, 10: 1253-1260.
|
| 29. |
Liu W, Li J, Cheng M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv Sci (Weinh), 2018, 5(10): 1800749.
|
| 30. |
Shi M, Chen Z, Farnaghi S, et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater, 2016, 30: 334-344.
|
| 31. |
Zhang RR, Liu XJ, Xiong ZY, et al. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. Artif Cells Nanomed Biotechnol, 2018, 46(sup1): 1123-1130.
|
| 32. |
Zhang XF, Chen QP, Mao XL. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int, 2019, 2019: 7908205.
|
| 33. |
Honda Y, Anada T, Kamakura S, et al. Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun, 2006, 345(3): 1155-1160.
|
| 34. |
Chen ZT, Wu CT, Gu WY, et al. Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials, 2014, 35(5): 1507-1518.
|
| 35. |
Champagne CM, Takebe J, Offenbacher S, et al. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone, 2002, 30(1): 26-31.
|
| 36. |
Freytes DO, Kang JW, Marcos-Campos I, et al. Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem, 2013, 114(1): 220-229.
|
| 37. |
Zhang J, Wu H, He F, et al. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions. Mater Sci Eng C Mater Biol Appl, 2019, 99: 1199-1212.
|
| 38. |
Weng L, Boda SK, Teusink MJ, et al. Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl Mater Interfaces, 2017, 9(29): 24484-24496.
|
| 39. |
Li H, Li J, Jiang J, et al. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Acta Biomaterialia, 2017, 54: 399-410.
|
| 40. |
Rigiracciolo DC, Scarpelli A, Lappano R, et al. Copper activates HIF-1alpha/GPER/VEGF signalling in cancer cells. Oncotarget, 2015, 6(33): 34158-34177.
|