| 1. |
Francis SL, Serena D, Carmine O, et al. Adipose-derived mesenchymal stem cells in the use of cartilage tissue engineering: the need for a rapid isolation procedure. Stem Cells International, 2018, 2018: 1-9.
|
| 2. |
Urdzíková LM, R??i?ka J, LaBagnara M, et al. Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int J Mol Sci, 2014, 15(7): 11275-11293.
|
| 3. |
Arboleda D, Forostyak S, Jendelova P, et al. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol, 2011, 31(7): 1113-1122.
|
| 4. |
Zografou A, Papadopoulos O, Tsigris C, et al. Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg, 2013, 71(2): 225-232.
|
| 5. |
鄧呈亮, 馮晶瑋, 魯峰. 脂肪來源干細胞促進難愈性創面愈合研究進展. 中華整形外科雜志, 2017, 33(6): 477-480.
|
| 6. |
Bertani N, Malatesta P, Volpi G, et al. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci, 2005, 118(Pt 17): 3925-3936.
|
| 7. |
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res, 2004, 95(1): 9-20.
|
| 8. |
Tomlinson DR, Gardiner NJ. Glucose Neurotoxicity. Nat Rev Neurosci, 2008, 9(1): 36-45.
|
| 9. |
許曉茹, 方開秀, 王力峰, 等. 2 型糖尿病大鼠脂肪干細胞體外成骨能力的研究. 牙體牙髓牙周病學雜志, 2016, 26(4): 202-207.
|
| 10. |
Chen XJ, Wu WJ, Zhou Q, et al. Advanced glycation end-products induce oxidative stress through the Sirt1/Nrf2 axis by interacting with the receptor of AGEs under diabetic conditions. J Cell Biochem, 2019, 120(2): 2159-2170.
|
| 11. |
Cheng NC, Hsieh TY, Lai HS, et al. High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells. Cytotherapy, 2016, 18(3): 371-383.
|
| 12. |
Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Research, 2006, 9(1): 31-35.
|
| 13. |
許言文, 李加輔, 朱瑞祥, 等. 糖尿病慢性潰瘍患者與非糖尿病者脂肪干細胞形態及增殖能力的差異. 中華醫學美學美容雜志, 2016, 22(2): 105-108.
|
| 14. |
El-Ftesi S, Chang EI, Longaker MT, et al. Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg, 2009, 123(2): 475-485.
|
| 15. |
Cianfarani F, Toietta G, Di Rocco G, et al. Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen, 2013, 21(4): 545-553.
|
| 16. |
Cramer C, Freisinger E, Jones RK, et al. Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev, 2010, 19(12): 1875-1884.
|
| 17. |
Ramia N, Kreydiyyeh SI. TNF-alpha reduces the Na+/K+ ATPase activity in LLC-PK1 cells by activating caspases and JNK and inhibiting NF-kappaB. Cell Biol Int, 2010, 34(6): 607-613.
|
| 18. |
Zhang D, Lu H, Chen Z, et al. High glucose induces the aging of mesenchymal stem cells via Akt/mTOR signaling. Mol Med Rep, 2017, 16(2): 1685-1690.
|
| 19. |
Bufalo MC, Almeida ME, Franca IA, et al. Advanced glycation endproducts produced by in vitro glycation of type Ⅰ collagen modulate the functional and secretory behavior of dorsal root ganglion cells cultivated in two-dimensional system. Exp Cell Res, 2019, 382(2): 111475.
|
| 20. |
Alikhani M, Maclellan CM, Raptis M, et al. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol, 2006, 292(2): C850-C856.
|
| 21. |
Davies LC, Alm JJ, Heldring N, et al. Type 1 diabetes mellitus donor mesenchymal stromal cells exhibit comparable potency to healthy controls in vitro. Stem Cells Transl Med, 2016, 5(11): 1485-1495.
|
| 22. |
金鑫, 王寶泉, 童偉, 等. 糖基化改裝人脂肪來源干細胞促進其骨髓歸巢及成骨的研究. 中華老年骨科與康復電子雜志, 2018, 4(5): 287-295.
|
| 23. |
Shin L, Peterson DA. Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes. Stem Cells Transl Med, 2012, 1(2): 125-135.
|
| 24. |
Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int, 2012, 2012: 812693.
|
| 25. |
Liu MH, Li Y, Han L, et al. Adipose-derived stem cells were impaired in testricting CD4+ T cell proliferation and polarization in type 2 diabetic ApoE –/– mouse. Mol Immunol, 2017, 87: 152-160.
|
| 26. |
姚遠鎮, 鄧呈亮, 王波. 糖尿病對脂肪源性間充質干細胞生物學功能影響的研究進展. 中華燒傷雜志, 2018, 34(9): 653-656.
|
| 27. |
Kuo YR, Wang CT, Cheng JT, et al. Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant, 2016, 25(1): 71-81.
|
| 28. |
Chuah YK, Basir R, Talib H, et al. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam, 2013, 2013: 403460.
|
| 29. |
Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS One, 2012, 7(6): e38752.
|
| 30. |
Trinh NT, Yamashita T, Ohneda K, et al. Increased expression of EGR-1 in diabetic human adipose tissue-derived mesenchymal stem cells reduces their wound healing capacity. Stem Cells Dev, 2016, 25(10): 760-773.
|
| 31. |
Zhang M, Yong L, Rao PC, et al. Blockade of receptors of advanced glycation end products ameliorates diabetic osteogenesis of adipose-derived stem cells through DNA methylation and Wnt signalling pathway. Cell Prolif, 2018, 51: e12471.
|
| 32. |
Li YM, Schilling T, Benisch P, et al. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun, 2007, 363(1): 209-215.
|
| 33. |
楊卉馨, 黃小會, 董曉惠, 等. 高糖環境對小鼠成骨前體細胞及脂肪干細胞成骨分化的影響. 解放軍醫學院學報, 2019, 40(5): 449-453, 469.
|
| 34. |
García-Hernández A, Arzate H, Gil-Chavarría I, et al. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone, 2012, 50(1): 276-288.
|
| 35. |
Sawangmake C, Pavasant P, Chansiripornchai P, et al. High glucose condition suppresses neurosphere formation by human periodontal ligament-derived mesenchymal stem cells. J Cell Biochem, 2014, 115(5): 928-939.
|
| 36. |
Hiraiwa H, Sakai T, Mitsuyama H, et al. Inflammatory effect of advanced glycation end products on human meniscal cells from osteoarthritic knees. Inflamm Res, 2011, 60(11): 1039-1048.
|
| 37. |
Tareck R, Stéphanie L. High glucose level impairs human mature bone marrow adipocyte function through increased ROS production. Front Endocrinol (Lausanne), 2019, 10: 607.
|
| 38. |
Rennert RC, Sorkin M, Januszyk M, et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther, 2014, 5(3): 79.
|
| 39. |
Harris LJ, Zhang P, Abdollahi H, et al. Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res, 2010, 163(2): e105-112.
|
| 40. |
伍鋒, 賀治青, 紀睿圳, 等. 晚期糖基化終產物對脂肪干細胞功能、血管新生能力的影響及丹紅注射液保護作用的實驗研究. 中國中西醫結合雜志, 2014, 34(7): 839-845.
|
| 41. |
王哲, 劉曉玉, 張殿寶, 等. 晚期糖基化終產物對人脂肪間充質干細胞功能影響的體外研究. 中國病理生理雜志, 2014, 30(5): 897-901.
|
| 42. |
Gu JH, Lee JS, Kim DW, et al. Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen, 2012, 20(2): 243-252.
|
| 43. |
?widerska E, Podolska M, Strycharz J, et al. Hyperglycemia changes expression of key adipogenesis markers (C/EBPα and PPARγ) and morphology of differentiating human visceral adipocytes. Nutrients, 2019, 11(8): 1835.
|
| 44. |
Rubina K, Kalinina N, Efimenko A, et al. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A, 2009, 15(8): 2039-2050.
|
| 45. |
Lafosse A, Dufeys C, Beauloye C, et al. Impact of hyperglycemia and low oxygen tension on adipose-derived stem cells compared with dermal fibroblasts and keratinocytes: importance for wound healing in type 2 diabetes. PLoS One, 2016, 11(12): e0168058.
|
| 46. |
Policha A, Zhang P, Chang L, et al. Endothelial differentiation of diabetic adipose-derived stem cells. J Surg Res, 2014, 192(2): 656-663.
|
| 47. |
Kim SM, Kim YH, Jun YJ, et al. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells. Int Wound J, 2016, 13 Suppl 1: 33-41.
|
| 48. |
Napoli I, Noon LA, Ribeiro S, et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron, 2012, 73(4): 729-742.
|
| 49. |
Hsu MN, Liao HT, Truong VA, et al. CRISPR-based activation of endogenous neurotrophic genes in adipose stem cell sheets to stimulate peripheral nerve regeneration. Theranostics, 2019, 9(21): 6099-6111.
|
| 50. |
Faroni A, Smith RJ, Lu L, et al. Human Schwann-like cells derived from adipose-derived mesenchymal stem cells rapidly de-differentiate in the absence of stimulating medium. Eur J Neurosci, 2016, 43(3): 417-430.
|
| 51. |
Kaewkhaw R, Scutt AM, Haycock JW. Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia, 2011, 59(5): 734-749.
|
| 52. |
Feldman EL, Nave KA, Jensen TS, et al. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron, 2017, 93(6): 1296-1313.
|
| 53. |
Chen J, Li C, Liu W, et al. miRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. J Mol Endocrinol, 2019, 63(3): 227-238.
|
| 54. |
Han JW, Choi D, Lee MY, et al. Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplant, 2016, 25(2): 313-326.
|
| 55. |
賀治青. 晚期糖基化終產物誘導人脂肪來源干細胞功能紊亂的機制研究. 上海: 第二軍醫大學, 2009.
|
| 56. |
Rojas DR, Tegeder I, Kuner R, et al. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species. J Mol Med, 2018, 96(12): 1395-1405.
|
| 57. |
Xiao S, Liu Z, Yao Y, et al. Diabetic human adipose-derived stem cells accelerate pressure ulcer healing by inducing angiogenesis and neurogenesis. Stem Cells Dev, 2019, 28(5): 319-328.
|