| 1. |
高坤, 朱文秀, 劉偉東, 等. 再生醫學治療新選擇: 間充質干細胞來源的外泌體. 中國組織工程研究, 2019, 23(13): 2107-2112.
|
| 2. |
Luzuriaga J, Pastor-Alonso O, Encinas JM, et al. Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Front Physiol, 2019, 10: 347. doi: 10.3389/fphys.2019.00347.
|
| 3. |
El Moshy S, Radwan IA, Rady D, et al. Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells Int, 2020, 2020: 7593402. doi: 10.1155/2020/7593402.
|
| 4. |
劉瓊, 文軍, 吳小明, 等. 體外培養乳牙牙髓干細胞向血管內皮細胞定向分化的實驗研究. 中國現代醫學雜志, 2019, 29(1): 29-34.
|
| 5. |
廖紅興, 張志輝, 劉展亮, 等. 低氧誘導因子1α與骨形態發生蛋白6協同過表達骨髓間充質干細胞在低氧環境下的成骨和成血管效應. 中國組織工程研究, 2019, 23(17): 2644-2650.
|
| 6. |
Jia P, Zuo GL, Zhang LF, et al. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One, 2014, 9(11): e112744. doi: 10.1371/journal.pone.0112744.
|
| 7. |
Lengfeld JE, Lutz SE, Smith JR, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A, 2017, 114(7): E1168-E1177.
|
| 8. |
Marchionni C, Bonsi L, Alviano F, et al. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol, 2009, 22(3): 699-706.
|
| 9. |
Grieco TM, Richman JM. Coordination of bilateral tooth replacement in the juvenile gecko is continuous with in ovo paterning. Evol Dev, 2018, 20(2): 51-64.
|
| 10. |
龐真貞, 王良, 高磊, 等. 人脫落乳牙牙髓干細胞與牙髓干細胞生物學功能差異研究. 中華老年口腔醫學雜志, 2017, 15(4): 204-208.
|
| 11. |
周武. 內皮祖細胞的生物學性狀及其治療作用的研究進展. 東南大學學報 (醫學版), 2014, 33(6): 783-787.
|
| 12. |
Dissanayaka WL, Han Y, Zhang L, et al. Bcl-2 overexpression and hypoxia synergistically enhance angiogenic properties of dental pulp stem cells. Int J Mol Sci, 2020, 21(17): 6159. doi: 10.3390/ijms21176159.
|
| 13. |
吳艷青, 張正紅, 羅倩萍, 等. HIF-1在卵巢黃體發育過程中對血管新生的調控作用. 中國細胞生物學學報, 2012, 34(10): 1042-1048.
|
| 14. |
柏文華, 疏佳萍, 戴王娟, 等. 抑制低氧誘導因子1α分解對早產兒腦損傷模型中血管生成的影響. 東南大學學報 (醫學版), 2019, 38(2): 265-268.
|
| 15. |
Jiang C, Sun J, Dai Y, et al. HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia. Stem Cell Res Ther, 2015, 6(1): 21. doi: 10.1186/s13287-015-0014-4.
|
| 16. |
Zhang YG, Yang Z, Zhang H, et al. Effect of negative pressure on human bone marrow mesenchymal stem cells in vitro. Connect Tissue Res, 2010, 51(1): 14-21.
|
| 17. |
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development, 2018, 145(11): dev146589. doi: 10.1242/dev.146589.
|
| 18. |
Hu Y, Li X, Huang G, et al. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron-like cells via the Wnt/β-catenin pathway. Mol Med Rep, 2019, 19(4): 3095-3104.
|
| 19. |
Li Z, Wang Y, Xiang S, et al. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun, 2020, 523(2): 506-513.
|
| 20. |
楊鑫, 李思潔, 趙瑋. Wnt信號通路在調控牙髓干細胞多向分化及炎癥損傷修復中的作用. 國際口腔醫學雜志, 2018, 45(3): 286-290.
|
| 21. |
Zhang Z, N?r F, Oh M, et al. Wnt/β-catenin signaling determines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells, 2016, 34(6): 1576-1587.
|