| 1. |
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol, 2019, 15(9): 550-570.
|
| 2. |
Rong Y, Zhang J, Jiang D, et al. Hypoxic pretreatment of small extracellular vesicles mediates cartilage repair in osteoarthritis by delivering miR-216a-5p. Acta Biomater, 2021, 122: 325-342.
|
| 3. |
Chen W, Xu Y, Li H, et al. Tanshinone ⅡA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration. ACS Appl Mater Interfaces, 2020, 12(19): 21470-21480.
|
| 4. |
Castro-Vi?uelas R, Sanjurjo-Rodríguez C, Pi?eiro-Ramil M, et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater, 2018, 36: 96-109.
|
| 5. |
Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2020, 232: 119679. doi: 10.1016/j.biomaterials.2019.119679.
|
| 6. |
鄧凱烽, 朱英, 廖子龍, 等. 基于復雜網絡技術分析中藥外用治療膝骨性關節炎的組方用藥規律. 時珍國醫國藥, 2021, 32(1): 73-76.
|
| 7. |
涂鵬程, 郭楊, 馬勇, 等. 威靈仙提取物可促進體外牽張應力環境下軟骨細胞表型的維持. 中國組織工程研究, 2020, 24(8): 1182-1187.
|
| 8. |
Pan YL, Ma Y, Guo Y, et al. Effects of clematis chinensis osbeck mediated by low-intensity pulsed ultrasound on transforming growth factor-β/Smad signaling in rabbit articular chondrocytes. J Med Ultrason (2001), 2019, 46(2): 177-186.
|
| 9. |
Khademolqorani S, Tavanai H, Chronakis IS, et al. The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications: A focus on silk fibroin-based scaffolds. Mater Sci Eng C Mater Biol Appl, 2021, 122: 111867. doi: 10.1016/j.msec.2021.111867.
|
| 10. |
Gavrilova NA, Borzenok SA, Revishchin AV, et al. The effect of biodegradable silk fibroin-based scaffolds containing glial cell line-derived neurotrophic factor (GDNF) on the corneal regeneration process. Int J Biol Macromol, 2021, 185: 264-276.
|
| 11. |
Drachuk I, Harbaugh S, Chávez JL, et al. Improving the activity of DNA-encoded sensing elements through confinement in silk microcapsules. ACS Appl Mater Interfaces, 2020, 12(43): 48329-48339.
|
| 12. |
Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact Mater, 2021, 6(10): 3396-3410.
|
| 13. |
Sun W, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional Biomaterial for tissue engineering. Int J Mol Sci, 2021, 22(3): 1499. doi: 10.3390/ijms22031499.
|
| 14. |
涂鵬程, 郭楊, 馬勇, 等. 模擬微重力培養環境下載威靈仙絲素蛋白微球對軟骨細胞表型分化的影響. 中華中醫藥雜志, 2021, 36(4): 2038-2043.
|
| 15. |
Qu J, Wang L, Niu L, et al. Porous silk fibroin microspheres sustainably releasing bioactive basic fibroblast growth factor. Materials (Basel), 2018, 11(8): 1280. doi: 10.3390/ma11081280.
|
| 16. |
李維嘉, 王志強, 許澤群, 等. 分光光度法測定靈芝孢子油中總三萜的含量. 食品研究與開發, 2019, 40(17): 165-170.
|
| 17. |
Suderman MT, Temeyer KB, Schlechte KG, et al. Three-dimensional culture of rhipicephalus (Boophilus) microplus BmⅧ-SCC cells on multiple synthetic scaffold systems and in rotating bioreactors. Insects, 2021, 12(8): 747. doi: 10.3390/insects12080747.
|
| 18. |
Ao Y, Li Z, You Q, et al. The yse of particulated juvenile allograft cartilage for the repair of porcine articular cartilage defects. Am J Sports Med, 2019, 47(10): 2308-2315.
|
| 19. |
Campos Y, Almirall A, Fuentes G, et al. Tissue engineering: an alternative to repair cartilage. Tissue Eng Part B Rev, 2019, 25(4): 357-373.
|
| 20. |
Pan T, Cheng TF, Jia YR, et al. Anti-rheumatoid arthritis effects of traditional Chinese herb couple in adjuvant-induced arthritis in rats. J Ethnopharmacol, 2017, 205: 1-7.
|
| 21. |
Xiong Y, Ma Y, Kodithuwakku ND, et al. Protective effects of clematichinenoside AR against inflammation and cytotoxicity induced by human tumor necrosis factor-α. Int Immunopharmacol, 2019, 75: 105563. doi: 10.1016/j.intimp.2019.04.010.
|
| 22. |
Lin TF, Wang L, Zhang Y, et al. Uses, chemical compositions, pharmacological activities and toxicology of Clematidis Radix et Rhizome-a Review. J Ethnopharmacol, 2021, 270: 113831.doi: 10.1016/j.jep.2021.113831.
|
| 23. |
潘婭嵐, 馬勇, 涂鵬程, 等. 低頻超聲促透威靈仙對早期兔膝骨關節炎的干預作用及機制研究. 中國中西醫結合雜志, 2020, 40(4): 470-475.
|
| 24. |
Qian KY, Song Y, Yan X, et al. Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials, 2020, 259: 120299. doi: 10.1016/j.biomaterials.2020.120299.
|
| 25. |
Zhao Y, Zhu ZS, Guan J, et al. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater, 2021, 125: 57-71.
|
| 26. |
Zhang W, Chen L, Chen J, et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial. Adv Healthc Mater, 2017, 6(10). doi: 10.1002/adhm.201700121.
|
| 27. |
Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm, 2019, 137: 37-45.
|
| 28. |
Zhang X, Zhou J, Xu Y. Optimized parameters for the preparation of silk fibroin drug-loaded microspheres based on the response surface method and a genetic algorithm-backpropagation neural network model. J Biomed Mater Res B Appl Biomater, 2021, 109(1): 6-18.
|
| 29. |
Wuest SL, Caliò M, Wernas T, et al. Influence of mechanical unloading on articular chondrocyte dedifferentiation. Int J Mol Sci, 2018, 19(5): 1289. doi: 10.3390/ijms19051289.
|
| 30. |
Onitsuka K, Murata K, Kokubun T, et al. Effects of controlling abnormal joint movement on expression of MMP13 and TIMP-1 in osteoarthritis. Cartilage, 2020, 11(1): 98-107.
|
| 31. |
Maenohara Y, Chijimatsu R, Tachibana N, et al. Lubricin contributes to homeostasis of articular cartilage by modulating differentiation of superficial zone cells. J Bone Miner Res, 2021, 36(4): 792-802.
|