| 1. |
Hockley A, Ge D, Vasquez-Montes D, et al. Minimally invasive versus open transforaminal lumbar interbody fusion surgery: An analysis of opioids, nonopioid analgesics, and perioperative characteristics. Global Spine J, 2019, 9(6): 624-629.
|
| 2. |
Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976), 2003, 28(15 Suppl): S26-S35.
|
| 3. |
Yang Y, Zhang L, Liu B, et al. Hidden and overall haemorrhage following minimally invasive and open transforaminal lumbar interbody fusion. J Orthop Traumatol, 2017, 18(4): 395-400.
|
| 4. |
Carlson BB, Saville P, Dowdell J, et al. Restoration of lumbar lordosis after minimally invasive transforaminal lumbar interbody fusion: a systematic review. Spine J, 2019, 19(5): 951-958.
|
| 5. |
Karikari IO, Isaacs RE. Minimally invasive transforaminal lumbar interbody fusion: a review of techniques and outcomes. Spine (Phila Pa 1976), 2010, 35(26 Suppl): S294-S301.
|
| 6. |
Kolev K, Longstaff C. Bleeding related to disturbed fibrinolysis. Br J Haematol, 2016, 175(1): 12-23.
|
| 7. |
Ge DH, Stekas ND, Varlotta CG, et al. Comparative analysis of two transforaminal lumbar interbody fusion techniques: Open TLIF versus Wiltse MIS TLIF. Spine (Phila Pa 1976), 2019, 44(9): E555-E560.
|
| 8. |
張莊, 楊曦, 汪雷, 等. 氨甲環酸在青少年脊柱矯形手術中的應用進展. 中國修復重建外科雜志, 2020, 34(11): 1468-1473.
|
| 9. |
Yuan QM, Zhao ZH, Xu BS. Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis. Eur Spine J, 2017, 26(1): 131-139.
|
| 10. |
張少云, 肖聰, 裴福興. 氨甲環酸在創傷骨科手術中應用的研究進展. 中國修復重建外科雜志, 2019, 33(11): 1457-1461.
|
| 11. |
周宗科, 黃澤寧, 楊惠林, 等. 中國骨科手術加速康復圍手術期氨甲環酸與抗凝血藥應用的專家共識. 中華骨與關節外科雜志, 2019, 12(2): 81-88.
|
| 12. |
Lin JD, Lenke LG, Shillingford JN, et al. Safety of a high-dose tranexamic acid protocol in complex adult spinal deformity: Analysis of 100 consecutive cases. Spine Deform, 2018, 6(2): 189-194.
|
| 13. |
Wong J, El Beheiry H, Rampersaud YR, et al. Tranexamic Acid reduces perioperative blood loss in adult patients having spinal fusion surgery. Anesth Analg, 2008, 107(5): 1479-1486.
|
| 14. |
Kim KT, Kim CK, Kim YC, et al. The effectiveness of low-dose and high-dose tranexamic acid in posterior lumbar interbody fusion: a double-blinded, placebo-controlled randomized study. Eur Spine J, 2017, 26(11): 2851-2857.
|
| 15. |
Raman T, Varlotta C, Vasquez-Montes D, et al. The use of tranexamic acid in adult spinal deformity: is there an optimal dosing strategy? Spine J, 2019, 19(10): 1690-1697.
|
| 16. |
周宗科, 翁習生, 孫天勝, 等. 中國骨科手術加速康復——圍術期血液管理專家共識. 中華骨與關節外科雜志, 2017, 10(1): 1-7.
|
| 17. |
Nadler SB, Hidalgo JH, Bloch T. Prediction of blood volume in normal human adults. Surgery, 1962, 51(2): 224-232.
|
| 18. |
Gross JB. Estimating allowable blood loss: corrected for dilution. Anesthesiology, 1983, 58(3): 277-280.
|
| 19. |
Li F, Li C, Xi X, et al. Distinct fusion intersegmental parameters regarding local sagittal balance provide similar clinical outcomes: a comparative study of minimally invasive versus open transforaminal lumbar interbody fusion. BMC Surg, 2020, 20(1): 97. doi: 10.1186/s12893-020-00765-0.
|
| 20. |
Smorgick Y, Baker KC, Bachison CC, et al. Hidden blood loss during posterior spine fusion surgery. Spine J, 2013, 13(8): 877-881.
|
| 21. |
Zhang H, Chen ZX, Sun ZM, et al. Comparison of the total and hidden blood loss in patients undergoing open and minimally invasive transforaminal lumbar interbody fusion. World Neurosurg, 2017, 107: 739-743.
|
| 22. |
Feng C, Zhang Y, Chong F, et al. Establishment and implementation of an enhanced recovery after surgery (ERAS) pathway tailored for minimally invasive transforaminal lumbar interbody fusion surgery. World Neurosurg, 2019, 129: e317-e323.
|
| 23. |
Zhang S, Xie J, Cao G, et al. Six-dose intravenous tranexamic acid regimen further inhibits postoperative fibrinolysis and reduces hidden blood loss following total knee arthroplasty. J Knee Surg, 2021, 34(2): 224-232.
|
| 24. |
Pong RP, Leveque JA, Edwards A, et al. Effect of tranexamic acid on blood loss, d-dimer, and fibrinogen kinetics in adult spinal deformity surgery. J Bone Joint Surg (Am), 2018, 100(9): 758-764.
|
| 25. |
Cao G, Xie J, Huang Z, et al. Efficacy and safety of multiple boluses of oral versus intravenous tranexamic acid at reducing blood loss after primary total knee arthroplasty without a tourniquet: A prospective randomized clinical trial. Thromb Res, 2018, 171: 68-73.
|
| 26. |
Mallepally AR, Mahajan R, Rustagi T, et al. Use of topical tranexamic acid to reduce blood loss in single-level transforaminal lumbar interbody fusion. Asian Spine J, 2020, 14(5): 593-600.
|
| 27. |
Sun H, Deng L, Deng J, et al. The efficacy and safety of prophylactic intravenous tranexamic acid on perioperative blood loss in patients treated with posterior lumbar interbody fusion. World Neurosurg, 2019, 125: e198-e204.
|
| 28. |
Zhang Z, Wang LN, Yang X, et al. The effect of multiple-dose oral versus intravenous tranexamic acid in reducing postoperative blood loss and transfusion rate after adolescent scoliosis surgery: a randomized controlled trial. Spine J, 2021, 21(2): 312-320.
|
| 29. |
Benoni G, Lethagen S, Fredin H. The effect of tranexamic acid on local and plasma fibrinolysis during total knee arthroplasty. Thromb Res, 1997, 85(3): 195-206.
|
| 30. |
Ko BS, Cho KJ, Kim YT, et al. Does Tranexamic acid increase the incidence of thromboembolism after spinal fusion surgery? Clin Spine Surg, 2020, 33(2): E71-E75.
|