| 1. |
Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine, 2019, 31(1): 1-14.
|
| 2. |
Kim YH, Ha KY, Rhyu KW, et al. Lumbar interbody fusion: Techniques, pearls and pitfalls. Asian Spine J, 2020, 14(5): 730-741.
|
| 3. |
孟海, 楊雍, 孫天勝, 等. 腰椎后路手術椎間融合器應用的專家共識. 中國脊柱脊髓雜志, 2021, 31(4): 379-384.
|
| 4. |
Liu JM, Xiong X, Peng AF, et al. A comparison of local bone graft with PEEK cage versus iliac bone graft used in anterior cervical discectomy and fusion. Clin Neurol Neurosurg, 2017, 155: 30-35.
|
| 5. |
Makino T, Takenaka S, Sakai Y, et al. Comparison of short-term radiographical and clinical outcomes after posterior lumbar interbody fusion with a 3D porous titanium alloy cage and a titanium-coated PEEK cage. Global Spine J, 2022, 12(5): 931-939.
|
| 6. |
Schnake KJ, Fleiter N, Hoffmann C, et al. PLIF surgery with titanium-coated PEEK or uncoated PEEK cages: a prospective randomised clinical and radiological study. Eur Spine J, 2021, 30(1): 114-121.
|
| 7. |
Li S, Huan Y, Zhu B, et al. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. J Mater Sci Mater Med, 2021, 33(1): 2. doi: 10.1007/s10856-021-06609-4.
|
| 8. |
Zippelius T, Strube P, Suleymanov F, et al. Safety and efficacy of an electron beam melting technique-manufactured titanium mesh cage for lumbar interbody fusion. Orthopade, 2019, 48(2): 150-156.
|
| 9. |
王志強, 馮皓宇, 馬迅, 等. 3D打印人工椎體及椎間融合器在頸椎前路手術中應用的臨床效果. 中國修復重建外科雜志, 2021, 35(9): 1147-1154.
|
| 10. |
Mayer F, Heider F, Haasters F, et al. Radiological and clinical outcomes after anterior cervical discectomy and fusion (ACDF) with an innovative 3D printed cellular titanium cage filled with vertebral bone marrow. Biomed Res Int, 2022, 2022: 6339910. doi: 10.1155/2022/6339910. eCollection 2022.
|
| 11. |
Warburton A, Girdler SJ, Mikhail CM, et al. Biomaterials in spinal implants: A review. Neurospine, 2020, 17(1): 101-110.
|
| 12. |
Pan CT, Lin CH, Huang YK, et al. Design of customize interbody fusion cages of Ti64ELI with gradient porosity by selective laser melting process. Micromachines (Basel), 2021, 12(3): 307. doi: 10.3390/mi12030307.
|
| 13. |
任捷, 呂智. 3D打印個性化腰椎融合器設計及生物力學性能研究分析. 中國骨傷, 2021, 34(8): 764-769.
|
| 14. |
Fogel G, Martin N, Lynch K, et al. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates—a comprehensive mechanical and biological analysis. Spine J, 2022, 22(6): 1028-1037.
|
| 15. |
Zhang Z, Li H, Fogel GR, et al. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med, 2018, 95: 167-174.
|
| 16. |
趙春伶, 賈少薇, 李劍, 等. 基于3D打印多孔支架和植入體的結構設計研究進展. 醫用生物力學, 2019, 34(4): 446-452.
|
| 17. |
Tamayo JA, Riascos M, Vargas CA, et al. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon, 2021, 7(5): e06892. doi: 10.1016/j.heliyon.2021.e06892.
|
| 18. |
da Costa Valente ML, de Oliveira TT, Kreve S, et al. Analysis of the mechanical and physicochemical properties of Ti-6Al-4V discs obtained by selective laser melting and subtractive manufacturing method. J Biomed Mater Res B Appl Biomater, 2021, 109(3): 420-427.
|
| 19. |
Adl Amini D, Okano I, Oezel L, et al. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage. Eur Spine J, 2021, 30(8): 2377-2384.
|
| 20. |
Landham PR, Don AS, Robertson PA. Do position and size matter? An analysis of cage and placement variables for optimum lordosis in PLIF reconstruction. Eur Spine J, 2017, 26(11): 2843-2850.
|
| 21. |
Amorim-Barbosa T, Pereira C, Catelas D, et al. Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion. Eur J Orthop Surg Traumatol, 2021. doi: 10.1007/s00590-021-03103-z.
|
| 22. |
趙龍, 曾建成, 謝天航, 等. 腰椎椎間融合術后椎間融合器沉降的研究進展. 中國修復重建外科雜志, 2021, 35(8): 1063-1067.
|
| 23. |
戚金來. 可控3D多孔結構椎間融合器設計及制備關鍵技術研究. 杭州: 杭州電子科技大學, 2022.
|
| 24. |
Adl Amini D, Moser M, Oezel L, et al. Early outcomes of three-dimensional-printed porous titanium versus polyetheretherketone cage implantation for stand-alone lateral lumbar interbody fusion in the treatment of symptomatic adjacent segment degeneration. World Neurosurg, 2022, 162: e14-e20.
|
| 25. |
Wu H, Shan Z, Zhao F, et al. Poor bone quality, multilevel surgery, and narrow and tall cages are associated with intraoperative endplate injuries and late-onset cage subsidence in lateral lumbar interbody fusion: A systematic review. Clin Orthop Relat Res, 2022, 480(1): 163-188.
|
| 26. |
毛譽蓉, 孫佳敏, 周雄, 等. 醫用特種高分子聚醚醚酮植入體及其表面界面工程. 功能高分子學報, 2021, 34(2): 144-160.
|
| 27. |
Hou Y, Yan Z, Wu Z. Concise review; The recent methods that enhance the osteogenic differentiation of human induced pluripotent stem cells. Curr Stem Cell Res Ther, 2021, 16(8): 949-957.
|
| 28. |
Rapuano BE, Lee JJ, MacDonald DE. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to α(5)β(1) integrins in osteoblasts. Eur J Oral Sci, 2012, 120(3): 185-194.
|