| 1. |
Li L, Mu J, Zhang Y, et al. Stimulation by exosomes from hypoxia preconditioned human umbilical vein endothelial cells facilitates mesenchymal stem cells angiogenic function for spinal cord repair. ACS Nano, 2022, 16(7): 10811-10823.
|
| 2. |
You Z, Gao X, Kang X, et al. Microvascular endothelial cells derived from spinal cord promote spinal cord injury repair. Bioact Mater, 2023, 29: 36-49.
|
| 3. |
Dray C, Rougon G, Debarbieux F. Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc Natl Acad Sci U S A, 2009, 106(23): 9459-9464.
|
| 4. |
Fedorova J, Kellerova E, Bimbova K, et al. The histopathology of severe graded compression in lower thoracic spinal cord segment of rat, evaluated at late post-injury phase. Cell Mol Neurobiol, 2022, 42(1): 173-193.
|
| 5. |
Figley SA, Khosravi R, Legasto JM, et al. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma, 2014, 31(6): 541-552.
|
| 6. |
Cao Y, Wu T, Yuan Z, et al. Three-dimensional imaging of microvasculature in the rat spinal cord following injury. Sci Rep, 2015, 5: 12643.
|
| 7. |
Li Y, Lucas-Osma AM, Black S, et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med, 2017, 23(6): 733-741.
|
| 8. |
Liu SM, Xiao ZF, Li X, et al. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury. CNS Neurosci Ther, 2019, 25(3): 375-385.
|
| 9. |
Tsai HH, Niu J, Munji R, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science, 2016, 351(6271): 379-384.
|
| 10. |
陶經緯, 周婧雅, 趙毅, 等. 川芎嗪對脊髓損傷大鼠鐵死亡的調控作用及機制. 中國組織工程研究, 2024, 28(26): 4158-4163.
|
| 11. |
張厚君, 蔣昇源, 鄧博文, 等. 川芎嗪改善脊髓損傷模型大鼠炎性微環境的機制. 中國組織工程研究, 2023, 27(11): 1701-1707.
|
| 12. |
蔣昇源, 鄧博文, 徐林, 等. 川芎嗪修復脊髓損傷的作用及機制. 中國組織工程研究, 2022, 26(11): 1799-1804.
|
| 13. |
Li G, Sng KS, Shu B, et al. Effects of tetramethylpyrazine treatment in a rat model of spinal cord injury: A systematic review and meta-analysis. Eur J Pharmacol, 2023, 945: 175524.
|
| 14. |
Li J, Wei J, Wan Y, et al. TAT-modified tetramethylpyrazine-loaded nanoparticles for targeted treatment of spinal cord injury. J Control Release, 2021, 335: 103-116.
|
| 15. |
Zhou L, Fan L, Yi X, et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano, 2018, 12(11): 10957-10967.
|
| 16. |
Fan L, Liu C, Chen X, et al. Exosomes-loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv Sci (Weinh), 2022, 9(13): e2105586.
|
| 17. |
蔣昇源, 鄧博文, 劉港, 等. 攜載川芎嗪緩釋微粒導電水凝膠修復脊髓損傷實驗研究. 中國修復重建外科雜志, 2023, 37(1): 65-73.
|
| 18. |
賀豐, 俞興, 穆曉紅, 等. 新型脊髓完全橫斷缺損模型大鼠的建立. 中國組織工程研究, 2016, 20(5): 635-639.
|
| 19. |
Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg, 1977, 47(4): 577-581.
|
| 20. |
Wang Y, Lv HQ, Chao X, et al. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury. Mil Med Res, 2022, 9(1): 16.
|
| 21. |
Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces, 2018, 10(21): 17742-17755.
|
| 22. |
Sun X, Liu H, Tan Z, et al. Remodeling microenvironment for endogenous repair through precise modulation of chondroitin sulfate proteoglycans following spinal cord injury. Small, 2023, 19(6): e2205012.
|
| 23. |
Ruschel J, Hellal F, Flynn KC, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science, 2015, 348(6232): 347-352.
|
| 24. |
Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther, 2023, 8(1): 245.
|
| 25. |
Wheaton BJ, Sena J, Sundararajan A, et al. Identification of regenerative processes in neonatal spinal cord injury in the opossum (Monodelphis domestica): A transcriptomic study. J Comp Neurol, 2021, 529(5): 969-986.
|
| 26. |
Liu D, Huang Y, Jia C, et al. Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol, 2015, 35(4): 483-491.
|
| 27. |
Ouellette J, Lacoste B. From neurodevelopmental to neurodegenerative disorders: The vascular continuum. Front Aging Neurosci, 2021, 13: 749026.
|
| 28. |
Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol, 2016, 17(10): 611-625.
|
| 29. |
Ruhrberg C, Gerhardt H, Golding M, et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev, 2002, 16(20): 2684-2698.
|
| 30. |
Duan YY, Chai Y, Zhang NL, et al. Microtubule stabilization promotes microcirculation reconstruction after spinal cord injury. J Mol Neurosci, 2021, 71(3): 583-595.
|
| 31. |
Duran CL, Howell DW, Dave JM, et al. Molecular regulation of sprouting angiogenesis. Compr Physiol, 2017, 8(1): 153-235.
|
| 32. |
Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem, 2000, 275(51): 39867-39873.
|
| 33. |
Dias DO, Kalkitsas J, Kelahmetoglu Y, et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat Commun, 2021, 12(1): 5501.
|
| 34. |
Menezes K, Rosa BG, Freitas C, et al. Human mesenchymal stromal/stem cells recruit resident pericytes and induce blood vessels maturation to repair experimental spinal cord injury in rats. Sci Rep, 2020, 10(1): 19604.
|
| 35. |
Wallace RG, Rochfort KD, Barabas P, et al. COMP-Ang1: Therapeutic potential of an engineered Angiopoietin-1 variant. Vascul Pharmacol, 2021, 141: 106919.
|
| 36. |
Lee SW, Kim WJ, Jun HO, et al. Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med, 2009, 23(2): 279-284.
|
| 37. |
Herrera JJ, Sundberg LM, Zentilin L, et al. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury. J Neurotrauma, 2010, 27(11): 2067-2076.
|
| 38. |
Li Y, Zhou X, Sarkar B, et al. Recent progress on self-healable conducting polymers. Adv Mater, 2022, 34(24): e2108932.
|
| 39. |
Kim J, Joshi HP, Sheen SH, et al. Resolvin D3 promotes inflammatory resolution, neuroprotection, and functional recovery after spinal cord injury. Mol Neurobiol, 2021, 58(1): 424-438.
|
| 40. |
許子星, 許衛紅, 陳薛敏, 等. 急性脊髓損傷大鼠血管重構與炎癥反應的相關性研究. 中國修復重建外科雜志, 2020, 34(11): 1429-1437.
|