- Knee Preservation Center, Hebei Medical University Third Hospital, Hebei Provincial Key Laboratory of Orthopaedic Biomechanics, Shijiazhuang Hebei, 050051, P. R. China;
Copyright ? the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
| 1. | Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage, 2013, 21(9): 1145-1153. |
| 2. | Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 2020, 104(2): 293-311. |
| 3. | Li Y, Yang Y, Guo J, et al. Spinal NF-kB upregulation contributes to hyperalgesia in a rat model of advanced osteoarthritis. Mol Pain, 2020, 16: 1744806920905691. doi: 10.1177/1744806920905691. |
| 4. | Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage, 2013, 21(9): 1145-1153. |
| 5. | Gholami Z, Faezi ST, Letafatkar A, et al. Pain neuroscience education, blended exercises and booster sessions as an effective therapy for pain, functional and psychological factors in patients with knee osteoarthritis: a study protocol for a single-blind randomised controlled trial with 22 factorial design during 6-month follow-up. BMJ Open, 2023, 13(5): e070336. doi: 10.1136/bmjopen-2022-070336. |
| 6. | Silverwood V, Blagojevic-Bucknall M, Jinks C, et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage, 2015, 23(4): 507-515. |
| 7. | Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393(10182): 1745-1759. |
| 8. | Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Rheum Dis Clin North (Am), 2008, 34(3): 515-529. |
| 9. | O'Connor MI. Sex differences in osteoarthritis of the hip and knee. J Am Acad Orthop Surg, 2007, 15 Suppl 1: S22-S25. |
| 10. | Dai X, Ying P, Ding W, et al. Genetic estrogen receptor alpha gene PvuⅡ polymorphism in susceptibility to knee osteoarthritis in a Chinese Han population: A southern Jiangsu study. Knee, 2020, 27(3): 803-808. |
| 11. | Zhao H, Yu F, Wu W. The mechanism by which estrogen level affects knee osteoarthritis pain in perimenopause and non-pharmacological measures. Int J Mol Sci, 2025, 26(6): 2391. doi: 10.3390/ijms26062391. |
| 12. | Mermerci BB, Garip Y, Uysal RS, et al. Clinic and ultrasound findings related to pain in patients with knee osteoarthritis. Clin Rheumatol, 2011, 30(8): 1055-1062. |
| 13. | Vincent HK, Heywood K, Connelly J, et al. Obesity and weight loss in the treatment and prevention of osteoarthritis. PM R, 2012, 4(5 Suppl): S59-S67. |
| 14. | Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol (1985), 2007, 102(3): 919-925. |
| 15. | 何家俊, 周盟, 李圓浩, 等. 肥胖對急性胰腺炎作用的研究進展. 中華臨床醫師雜志(電子版), 2019, 13(7): 548-551. |
| 16. | McNulty AL, Miller MR, O'Connor SK, et al. The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res, 2011, 52(6): 523-533. |
| 17. | Primrose JG, Jain L, Bolam SM, et al. Concentration-dependent effects of leptin on osteoarthritis-associated changes in phenotype of human chondrocytes. Connect Tissue Res, 2023, 64(5): 457-468. |
| 18. | Rogers MW, Wilder FV. The association of BMI and knee pain among persons with radiographic knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord, 2008, 9: 163. doi: 10.1186/1471-2474-9-163. |
| 19. | de Miguel Mendieta E, Cobo Ibá?ez T, Usón Jaeger J, et al. Clinical and ultrasonographic findings related to knee pain in osteoarthritis. Osteoarthritis Cartilage, 2006, 14(6): 540-544. |
| 20. | Hill CL, Gale DR, Chaisson CE, et al. Periarticular lesions detected on magnetic resonance imaging: prevalence in knees with and without symptoms. Arthritis Rheum, 2003, 48(10): 2836-2844. |
| 21. | Monteforte P, Rovetta G. Sonographic assessment of soft tissue alterations in osteoarthritis of the knee. Int J Tissue React, 1999, 21(1): 19-23. |
| 22. | Monteforte P, Rovetta G. Sonographic assessment of soft tissue alterations in osteoarthritis of the knee. Int J Tissue React, 1999, 21(1): 19-23. |
| 23. | de Miguel Mendieta E, Cobo Ibá?ez T, Usón Jaeger J, et al. Clinical and ultrasonographic findings related to knee pain in osteoarthritis. Osteoarthritis Cartilage, 2006, 14(6): 540-544. |
| 24. | Zhao Z, Zhao M, Yang T, et al. Identifying significant structural factors associated with knee pain severity in patients with osteoarthritis using machine learning. Sci Rep, 2024, 14(1): 14705. doi: 10.1038/s41598-024-65613-0. |
| 25. | Stannus OP, Jones G, Blizzard L, et al. Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis, 2013, 72(4): 535-540. |
| 26. | Yang Y, Hao C, Jiao T, et al. Osteoarthritis treatment via the GLP-1-mediated gut-joint axis targets intestinal FXR signaling. Science, 2025, 388(6742): eadt0548. doi: 10.1126/science.adt0548. |
| 27. | Longo UG, Lalli A, Bandini B, et al. Role of the gut microbiota in osteoarthritis, rheumatoid arthritis, and spondylarthritis: an update on the gut-joint axis. Int J Mol Sci, 2024, 25(6): 3242. doi: 10.3390/ijms25063242. |
| 28. | Li X, Ellman M, Muddasani P, et al. Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum, 2009, 60(2): 513-523. |
| 29. | Arendt-Nielsen L, Eskehave TN, Egsgaard LL, et al. Association between experimental pain biomarkers and serologic markers in patients with different degrees of painful knee osteoarthritis. Arthritis Rheumatol, 2014, 66(12): 3317-3326. |
| 30. | Liu L, Tian F, Li GY, et al. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr, 2022, 9: 1012087. doi: 10.3389/fnut.2022.1012087. |
| 31. | Yang D, Chen Y, Guo J, et al. The organ-joint axes in osteoarthritis: significant pathogenesis and therapeutic targets. Aging Dis, 2024, 16(5): 2999-3021. |
| 32. | Sun C, Zhou X, Guo T, et al. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front Immunol, 2023, 14: 1168818. doi: 10.3389/fimmu.2023.1168818. |
| 33. | Mündermann A, Nüesch C, Ewald H, et al. Osteoarthritis year in review 2024: Biomechanics. Osteoarthritis Cartilage, 2024, 32(12): 1530-1541. |
| 34. | Fowler-Brown A, Kim DH, Shi L, et al. The mediating effect of leptin on the relationship between body weight and knee osteoarthritis in older adults. Arthritis Rheumatol, 2015, 67(1): 169-175. |
| 35. | 高蓉琳, 蒲金呈, 韓放, 等. 代謝性炎癥在骨關節炎發生發展中的作用與治療現狀. 同濟大學學報(醫學版), 2024, 45(1): 130-136. |
| 36. | 孫鏞奇, 郭克淳, 劉澤中, 等. 骨代謝水平與膝骨關節炎疼痛的臨床相關性研究. 中國骨傷, 2025, 38(5): 482-486. |
| 37. | Diamond LE, Grant T, Uhlrich SD. Osteoarthritis year in review 2023: Biomechanics. Osteoarthritis Cartilage, 2024, 32(2): 138-147. |
| 38. | Sutton AJ, Muir KR, Mockett S, Fentem P. A case-control study to investigate the relation between low and moderate levels of physical activity and osteoarthritis of the knee using data collected as part of the Allied Dunbar National Fitness Survey. Ann Rheum Dis, 2001, 60(8): 756-64. |
| 39. | Hutchison L, Grayson J, Hiller C, et al. Relationship between knee biomechanics and pain in people with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken), 2023, 75(6): 1351-1361. |
| 40. | Chang A, Hurwitz D, Dunlop D, et al. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann Rheum Dis, 2007, 66(10): 1271-1275. |
| 41. | Martínez-Moreno D, Jiménez G, Gálvez-Martín P, et al. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1067-1075. |
| 42. | Morgan M, Nazemian V, Harrington K, et al. Mini review: The role of sensory innervation to subchondral bone in osteoarthritis pain. Front Endocrinol (Lausanne), 2022, 13: 1047943. doi: 10.3389/fendo.2022.1047943. |
| 43. | Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol, 2021, 17(1): 34-46. |
| 44. | Obeidat AM, Wood MJ, Adamczyk NS, et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat Commun, 2023, 14(1): 2479. doi: 10.1038/s41467-023-38241-x. |
| 45. | Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci, 2015, 131: 73-118. |
| 46. | Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci, 2015, 131: 73-118. |
| 47. | O'Neill TW, Felson DT. Mechanisms of osteoarthritis (OA) pain. Curr Osteoporos Rep, 2018, 16(5): 611-616. |
| 48. | Koivisto AP, Belvisi MG, Gaudet R, et al. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov, 2022, 21(1): 41-59. |
| 49. | La Hausse De Lalouviere L, Morice O, Fitzgerald M. Altered sensory innervation and pain hypersensitivity in a model of young painful arthritic joints: short- and long-term effects. Inflamm Res, 2021, 70(4): 483-493. |
| 50. | Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain, 2011, 152(3 Suppl): S2-S15. |
| 51. | Schaible HG, K?nig C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem, 2024, 168(11): 3644-3662. |
| 52. | Raoof R, Martin Gil C, Lafeber FPJG, et al. Dorsal root ganglia macrophages maintain osteoarthritis pain. J Neurosci, 2021, 41(39): 8249-8261. |
| 53. | Geraghty T, Obeidat AM, Ishihara S, et al. Age-associated changes in knee osteoarthritis, pain-related behaviors, and dorsal root ganglia immunophenotyping of male and female mice. Arthritis Rheumatol, 2023, 75(10): 1770-1780. |
| 54. | Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine, 2014, 70(2): 185-193. |
| 55. | Alsaloum M, Higerd GP, Effraim PR, et al. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat Rev Neurol, 2020, 16(12): 689-705. |
| 56. | Yang Y, Huang J, Mis MA, et al. Nav1. 7-A1632G mutation from a family with inherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli. J Neurosci, 2016, 36(28): 7511-7522. |
| 57. | Dib-Hajj SD, Yang Y, Black JA, et al. The Na(V)1. 7 sodium channel: from molecule to man. Nat Rev Neurosci, 2013, 14(1): 49-62. |
| 58. | Fu C, Lin Y, Lin Q, et al. Protective mechanism of Prim-O-glucosylcimifugin in the treatment of osteoarthritis: Based on lncRNA XIST regulation of Nav1. 7. Biomed Pharmacother, 2024, 181: 117597. doi: 10.1016/j.biopha.2024.117597. |
| 59. | Reid AR, C?té PD, McDougall JJ. Long-term blockade of nociceptive Nav1. 7 channels is analgesic in rat models of knee arthritis. Biomolecules, 2022, 12(11): 1571. doi: 10.3390/biom12111571. |
| 60. | O'Brien MS, Philpott HTA, McDougall JJ. Targeting the Nav1. 8 ion channel engenders sex-specific responses in lysophosphatidic acid-induced joint neuropathy. Pain, 2019, 160(1): 269-278. |
| 61. | McCollum MM, Larmore M, Ishihara S, et al. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. Cell Rep, 2022, 40(8): 111248. doi: 10.1016/j.celrep.2022.111248. |
| 62. | Yin X, Wang Q, Tang Y, et al. Research progress on macrophage polarization during osteoarthritis disease progression: a review. J Orthop Surg Res, 2024, 19(1): 584. doi: 10.1186/s13018-024-05052-9. |
| 63. | Jie L, Zhang L, Fu H, et al. Xibining inhibition of the PI3K-AKT pathway reduces M1 macrophage polarization to ameliorate KOA synovial inflammation and nociceptive sensitization. Phytomedicine, 2025, 136: 156281. doi: 10.1016/j.phymed.2024.156281. |
| 64. | Xie J, Huang Z, Yu X, et al. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev, 2019, 46: 36-44. |
| 65. | Geraghty T, Ishihara S, Obeidat AM, et al. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. Arthritis Res Ther, 2024, 26(1): 224. doi: 10.1186/s13075-024-03457-9. |
| 66. | Park DR, Kim J, Kim GM, et al. Osteoclast-associated receptor blockade prevents articular cartilage destruction via chondrocyte apoptosis regulation. Nat Commun, 2020, 11(1): 4343. doi: 10.1038/s41467-020-18208-y. |
| 67. | Aso K, Shahtaheri SM, Hill R, et al. Associations of symptomatic knee osteoarthritis with histopathologic features in subchondral bone. Arthritis Rheumatol, 2019, 71(6): 916-924. |
| 68. | Sakurai Y, Fujita M, Kawasaki S, et al. Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain, 2019, 160(4): 895-907. |
| 69. | Blackler G, Lai-Zhao Y, Klapak J, et al. Targeting STAT6-mediated synovial macrophage activation improves pain in experimental knee osteoarthritis. Arthritis Res Ther, 2024, 26(1): 73. doi: 10.1186/s13075-024-03309-6. |
- 1. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage, 2013, 21(9): 1145-1153.
- 2. Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 2020, 104(2): 293-311.
- 3. Li Y, Yang Y, Guo J, et al. Spinal NF-kB upregulation contributes to hyperalgesia in a rat model of advanced osteoarthritis. Mol Pain, 2020, 16: 1744806920905691. doi: 10.1177/1744806920905691.
- 4. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage, 2013, 21(9): 1145-1153.
- 5. Gholami Z, Faezi ST, Letafatkar A, et al. Pain neuroscience education, blended exercises and booster sessions as an effective therapy for pain, functional and psychological factors in patients with knee osteoarthritis: a study protocol for a single-blind randomised controlled trial with 22 factorial design during 6-month follow-up. BMJ Open, 2023, 13(5): e070336. doi: 10.1136/bmjopen-2022-070336.
- 6. Silverwood V, Blagojevic-Bucknall M, Jinks C, et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage, 2015, 23(4): 507-515.
- 7. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393(10182): 1745-1759.
- 8. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Rheum Dis Clin North (Am), 2008, 34(3): 515-529.
- 9. O'Connor MI. Sex differences in osteoarthritis of the hip and knee. J Am Acad Orthop Surg, 2007, 15 Suppl 1: S22-S25.
- 10. Dai X, Ying P, Ding W, et al. Genetic estrogen receptor alpha gene PvuⅡ polymorphism in susceptibility to knee osteoarthritis in a Chinese Han population: A southern Jiangsu study. Knee, 2020, 27(3): 803-808.
- 11. Zhao H, Yu F, Wu W. The mechanism by which estrogen level affects knee osteoarthritis pain in perimenopause and non-pharmacological measures. Int J Mol Sci, 2025, 26(6): 2391. doi: 10.3390/ijms26062391.
- 12. Mermerci BB, Garip Y, Uysal RS, et al. Clinic and ultrasound findings related to pain in patients with knee osteoarthritis. Clin Rheumatol, 2011, 30(8): 1055-1062.
- 13. Vincent HK, Heywood K, Connelly J, et al. Obesity and weight loss in the treatment and prevention of osteoarthritis. PM R, 2012, 4(5 Suppl): S59-S67.
- 14. Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol (1985), 2007, 102(3): 919-925.
- 15. 何家俊, 周盟, 李圓浩, 等. 肥胖對急性胰腺炎作用的研究進展. 中華臨床醫師雜志(電子版), 2019, 13(7): 548-551.
- 16. McNulty AL, Miller MR, O'Connor SK, et al. The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res, 2011, 52(6): 523-533.
- 17. Primrose JG, Jain L, Bolam SM, et al. Concentration-dependent effects of leptin on osteoarthritis-associated changes in phenotype of human chondrocytes. Connect Tissue Res, 2023, 64(5): 457-468.
- 18. Rogers MW, Wilder FV. The association of BMI and knee pain among persons with radiographic knee osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord, 2008, 9: 163. doi: 10.1186/1471-2474-9-163.
- 19. de Miguel Mendieta E, Cobo Ibá?ez T, Usón Jaeger J, et al. Clinical and ultrasonographic findings related to knee pain in osteoarthritis. Osteoarthritis Cartilage, 2006, 14(6): 540-544.
- 20. Hill CL, Gale DR, Chaisson CE, et al. Periarticular lesions detected on magnetic resonance imaging: prevalence in knees with and without symptoms. Arthritis Rheum, 2003, 48(10): 2836-2844.
- 21. Monteforte P, Rovetta G. Sonographic assessment of soft tissue alterations in osteoarthritis of the knee. Int J Tissue React, 1999, 21(1): 19-23.
- 22. Monteforte P, Rovetta G. Sonographic assessment of soft tissue alterations in osteoarthritis of the knee. Int J Tissue React, 1999, 21(1): 19-23.
- 23. de Miguel Mendieta E, Cobo Ibá?ez T, Usón Jaeger J, et al. Clinical and ultrasonographic findings related to knee pain in osteoarthritis. Osteoarthritis Cartilage, 2006, 14(6): 540-544.
- 24. Zhao Z, Zhao M, Yang T, et al. Identifying significant structural factors associated with knee pain severity in patients with osteoarthritis using machine learning. Sci Rep, 2024, 14(1): 14705. doi: 10.1038/s41598-024-65613-0.
- 25. Stannus OP, Jones G, Blizzard L, et al. Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis, 2013, 72(4): 535-540.
- 26. Yang Y, Hao C, Jiao T, et al. Osteoarthritis treatment via the GLP-1-mediated gut-joint axis targets intestinal FXR signaling. Science, 2025, 388(6742): eadt0548. doi: 10.1126/science.adt0548.
- 27. Longo UG, Lalli A, Bandini B, et al. Role of the gut microbiota in osteoarthritis, rheumatoid arthritis, and spondylarthritis: an update on the gut-joint axis. Int J Mol Sci, 2024, 25(6): 3242. doi: 10.3390/ijms25063242.
- 28. Li X, Ellman M, Muddasani P, et al. Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum, 2009, 60(2): 513-523.
- 29. Arendt-Nielsen L, Eskehave TN, Egsgaard LL, et al. Association between experimental pain biomarkers and serologic markers in patients with different degrees of painful knee osteoarthritis. Arthritis Rheumatol, 2014, 66(12): 3317-3326.
- 30. Liu L, Tian F, Li GY, et al. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr, 2022, 9: 1012087. doi: 10.3389/fnut.2022.1012087.
- 31. Yang D, Chen Y, Guo J, et al. The organ-joint axes in osteoarthritis: significant pathogenesis and therapeutic targets. Aging Dis, 2024, 16(5): 2999-3021.
- 32. Sun C, Zhou X, Guo T, et al. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front Immunol, 2023, 14: 1168818. doi: 10.3389/fimmu.2023.1168818.
- 33. Mündermann A, Nüesch C, Ewald H, et al. Osteoarthritis year in review 2024: Biomechanics. Osteoarthritis Cartilage, 2024, 32(12): 1530-1541.
- 34. Fowler-Brown A, Kim DH, Shi L, et al. The mediating effect of leptin on the relationship between body weight and knee osteoarthritis in older adults. Arthritis Rheumatol, 2015, 67(1): 169-175.
- 35. 高蓉琳, 蒲金呈, 韓放, 等. 代謝性炎癥在骨關節炎發生發展中的作用與治療現狀. 同濟大學學報(醫學版), 2024, 45(1): 130-136.
- 36. 孫鏞奇, 郭克淳, 劉澤中, 等. 骨代謝水平與膝骨關節炎疼痛的臨床相關性研究. 中國骨傷, 2025, 38(5): 482-486.
- 37. Diamond LE, Grant T, Uhlrich SD. Osteoarthritis year in review 2023: Biomechanics. Osteoarthritis Cartilage, 2024, 32(2): 138-147.
- 38. Sutton AJ, Muir KR, Mockett S, Fentem P. A case-control study to investigate the relation between low and moderate levels of physical activity and osteoarthritis of the knee using data collected as part of the Allied Dunbar National Fitness Survey. Ann Rheum Dis, 2001, 60(8): 756-64.
- 39. Hutchison L, Grayson J, Hiller C, et al. Relationship between knee biomechanics and pain in people with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken), 2023, 75(6): 1351-1361.
- 40. Chang A, Hurwitz D, Dunlop D, et al. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann Rheum Dis, 2007, 66(10): 1271-1275.
- 41. Martínez-Moreno D, Jiménez G, Gálvez-Martín P, et al. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1067-1075.
- 42. Morgan M, Nazemian V, Harrington K, et al. Mini review: The role of sensory innervation to subchondral bone in osteoarthritis pain. Front Endocrinol (Lausanne), 2022, 13: 1047943. doi: 10.3389/fendo.2022.1047943.
- 43. Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol, 2021, 17(1): 34-46.
- 44. Obeidat AM, Wood MJ, Adamczyk NS, et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat Commun, 2023, 14(1): 2479. doi: 10.1038/s41467-023-38241-x.
- 45. Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci, 2015, 131: 73-118.
- 46. Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci, 2015, 131: 73-118.
- 47. O'Neill TW, Felson DT. Mechanisms of osteoarthritis (OA) pain. Curr Osteoporos Rep, 2018, 16(5): 611-616.
- 48. Koivisto AP, Belvisi MG, Gaudet R, et al. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov, 2022, 21(1): 41-59.
- 49. La Hausse De Lalouviere L, Morice O, Fitzgerald M. Altered sensory innervation and pain hypersensitivity in a model of young painful arthritic joints: short- and long-term effects. Inflamm Res, 2021, 70(4): 483-493.
- 50. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain, 2011, 152(3 Suppl): S2-S15.
- 51. Schaible HG, K?nig C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem, 2024, 168(11): 3644-3662.
- 52. Raoof R, Martin Gil C, Lafeber FPJG, et al. Dorsal root ganglia macrophages maintain osteoarthritis pain. J Neurosci, 2021, 41(39): 8249-8261.
- 53. Geraghty T, Obeidat AM, Ishihara S, et al. Age-associated changes in knee osteoarthritis, pain-related behaviors, and dorsal root ganglia immunophenotyping of male and female mice. Arthritis Rheumatol, 2023, 75(10): 1770-1780.
- 54. Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine, 2014, 70(2): 185-193.
- 55. Alsaloum M, Higerd GP, Effraim PR, et al. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat Rev Neurol, 2020, 16(12): 689-705.
- 56. Yang Y, Huang J, Mis MA, et al. Nav1. 7-A1632G mutation from a family with inherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli. J Neurosci, 2016, 36(28): 7511-7522.
- 57. Dib-Hajj SD, Yang Y, Black JA, et al. The Na(V)1. 7 sodium channel: from molecule to man. Nat Rev Neurosci, 2013, 14(1): 49-62.
- 58. Fu C, Lin Y, Lin Q, et al. Protective mechanism of Prim-O-glucosylcimifugin in the treatment of osteoarthritis: Based on lncRNA XIST regulation of Nav1. 7. Biomed Pharmacother, 2024, 181: 117597. doi: 10.1016/j.biopha.2024.117597.
- 59. Reid AR, C?té PD, McDougall JJ. Long-term blockade of nociceptive Nav1. 7 channels is analgesic in rat models of knee arthritis. Biomolecules, 2022, 12(11): 1571. doi: 10.3390/biom12111571.
- 60. O'Brien MS, Philpott HTA, McDougall JJ. Targeting the Nav1. 8 ion channel engenders sex-specific responses in lysophosphatidic acid-induced joint neuropathy. Pain, 2019, 160(1): 269-278.
- 61. McCollum MM, Larmore M, Ishihara S, et al. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. Cell Rep, 2022, 40(8): 111248. doi: 10.1016/j.celrep.2022.111248.
- 62. Yin X, Wang Q, Tang Y, et al. Research progress on macrophage polarization during osteoarthritis disease progression: a review. J Orthop Surg Res, 2024, 19(1): 584. doi: 10.1186/s13018-024-05052-9.
- 63. Jie L, Zhang L, Fu H, et al. Xibining inhibition of the PI3K-AKT pathway reduces M1 macrophage polarization to ameliorate KOA synovial inflammation and nociceptive sensitization. Phytomedicine, 2025, 136: 156281. doi: 10.1016/j.phymed.2024.156281.
- 64. Xie J, Huang Z, Yu X, et al. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev, 2019, 46: 36-44.
- 65. Geraghty T, Ishihara S, Obeidat AM, et al. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. Arthritis Res Ther, 2024, 26(1): 224. doi: 10.1186/s13075-024-03457-9.
- 66. Park DR, Kim J, Kim GM, et al. Osteoclast-associated receptor blockade prevents articular cartilage destruction via chondrocyte apoptosis regulation. Nat Commun, 2020, 11(1): 4343. doi: 10.1038/s41467-020-18208-y.
- 67. Aso K, Shahtaheri SM, Hill R, et al. Associations of symptomatic knee osteoarthritis with histopathologic features in subchondral bone. Arthritis Rheumatol, 2019, 71(6): 916-924.
- 68. Sakurai Y, Fujita M, Kawasaki S, et al. Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain, 2019, 160(4): 895-907.
- 69. Blackler G, Lai-Zhao Y, Klapak J, et al. Targeting STAT6-mediated synovial macrophage activation improves pain in experimental knee osteoarthritis. Arthritis Res Ther, 2024, 26(1): 73. doi: 10.1186/s13075-024-03309-6.

