| 1. |
Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage, 2022, 30(2): 207-215.
|
| 2. |
Wu Y, Sun K, Li M, et al. LRP1 mediates endocytosis activity and is a potential therapeutic target in osteoarthritis. Orthop Surg, 2025, 17(6): 1604-1619.
|
| 3. |
Wu Y, Li J, Zeng Y, et al. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci, 2022, 14(1): 40. doi: 10.1038/s41368-022-00187-z.
|
| 4. |
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA, 2021, 325(6): 568-578.
|
| 5. |
Tang S, Zhang C, Oo WM, et al. Osteoarthritis. Nat Rev Dis Primers, 2025, 11(1): 10. doi: 10.1038/s41572-025-00594-6.
|
| 6. |
GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol, 2023, 5(9): e508-e522.
|
| 7. |
Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol, 2016, 12(2): 92-101.
|
| 8. |
Bannuru RR, Osani MC, Vaysbrot EE, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage, 2019, 27(11): 1578-1589.
|
| 9. |
Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol, 2020, 16(12): 673-688.
|
| 10. |
Zheng L, Zhang Z, Sheng P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev, 2021, 66: 101249. doi: 10.1016/j.arr.2020.101249.
|
| 11. |
Qi Z, Zhu J, Cai W, et al. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol Cell Biochem, 2024, 479(6): 1513-1524.
|
| 12. |
Gomez-Contreras PC, Kluz PN, Hines MR, et al. Intersections between mitochondrial metabolism and redox biology mediate posttraumatic osteoarthritis. Curr Rheumatol Rep, 2021, 23(5): 32. doi: 10.1007/s11926-021-00994-z.
|
| 13. |
Sampath SJP, Venkatesan V, Ghosh S, et al. Obesity, metabolic syndrome, and osteoarthritis-an updated review. Curr Obes Rep, 2023, 12(3): 308-331.
|
| 14. |
Certo M, Llibre A, Lee W, et al. Understanding lactate sensing and signalling. Trends Endocrinol Metab, 2022, 33(10): 722-735.
|
| 15. |
Chen L, Huang L, Gu Y, et al. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci, 2022, 23(19): 11943. doi: 10.3390/ijms231911943.
|
| 16. |
Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther, 2022, 7(1): 305. doi: 10.1038/s41392-022-01151-3.
|
| 17. |
Chen J, Huang Z, Chen Y, et al. Lactate and lactylation in cancer. Signal Transduct Target Ther, 2025, 10(1): 38. doi: 10.1038/s41392-024-02082-x.
|
| 18. |
Li R, Yang Y, Wang H, et al. Lactate and lactylation in the brain: current progress and perspectives. Cell Mol Neurobiol, 2023, 43(6): 2541-2555.
|
| 19. |
Huang Y, Yue S, Yan Z, et al. Lactate-upregulated ARG2 expression induces cellular senescence in fibroblast-like synoviocytes of osteoarthritis via activating the mTOR/S6K1 signaling pathway. Int Immunopharmacol, 2024, 142(Pt A): 113071. doi: 10.1016/j.intimp.2024.113071.
|
| 20. |
Huang YF, Wang G, Ding L, et al. Lactate-upregulated NADPH-dependent NOX4 expression via HCAR1/PI3K pathway contributes to ROS-induced osteoarthritis chondrocyte damage. Redox Biol, 2023, 67: 102867. doi: 10.1016/j.redox.2023.102867.
|
| 21. |
Yu X, Yang J, Xu J, et al. Histone lactylation: from tumor lactate metabolism to epigenetic regulation. Int J Biol Sci, 2024, 20(5): 1833-1854.
|
| 22. |
Xie Y, Hu H, Liu M, et al. The role and mechanism of histone lactylation in health and diseases. Front Genet, 2022, 13: 949252. doi: 10.3389/fgene.2022.949252.
|
| 23. |
Xia J, Qiao Z, Hao X, et al. LDHA-induced histone lactylation mediates the development of osteoarthritis through regulating the transcription activity of TPI1 gene. Autoimmunity, 2024, 57(1): 2384889. doi: 10.1080/08916934.2024.2384889.
|
| 24. |
Lan W, Chen X, Yu H, et al. UGDH Lactylation aggravates osteoarthritis by suppressing glycosaminoglycan synthesis and orchestrating nucleocytoplasmic transport to activate MAPK signaling. Adv Sci (Weinh), 2025, 12(20): e2413709. doi: 10.1002/advs.202413709.
|
| 25. |
Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev, 2022, 68: 81-92.
|
| 26. |
Lin Y, Wang Y, Li PF. Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol, 2022, 13: 1038421. doi: 10.3389/fphys.2022.1038421.
|
| 27. |
Pouysségur J, Marchiq I, Parks SK, et al. ‘Warburg effect’ controls tumor growth, bacterial, viral infections and immunity- Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol, 2022, 86(Pt 2): 334-346.
|
| 28. |
Xu B, Liu Y, Li N, et al. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol, 2024, 15: 1395786. doi: 10.3389/fimmu.2024.1395786.
|
| 29. |
Zhang M, Kong X, Wu C, et al. The role of lactate and lactylation in ischemic cardiomyopathy: Mechanisms and gene expression. Exp Mol Pathol, 2025, 141: 104957. doi: 10.1016/j.yexmp.2025.104957.
|
| 30. |
Zhao L, Qi H, Lv H, et al. Lactylation in health and disease: physiological or pathological? Theranostics, 2025, 15(5): 1787-1821. doi: 10.7150/thno.105353.
|
| 31. |
Nian F, Qian Y, Xu F, et al. LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun, 2022, 615: 31-35.
|
| 32. |
Luan S, Luan J. A multidimensional approach reveals the function of lactylation related genes in osteoarthritis. Sci Rep, 2025, 15(1): 7743. doi: 10.1038/s41598-025-89072-3.
|
| 33. |
Zhang Y, Zhao CY, Zhou Z, et al. The effect of lactate dehydrogenase B and its mediated histone lactylation on chondrocyte ferroptosis during osteoarthritis. J Orthop Surg Res, 2025, 20(1): 493. doi: 10.1186/s13018-025-05894-x.
|
| 34. |
Yang B, Li Z, Yang Z, et al. Recapitulating hypoxic metabolism in cartilaginous organoids via adaptive cell-matrix interactions enhances histone lactylation and cartilage regeneration. Nat Commun, 2025, 16(1): 2711. doi: 10.1038/s41467-025-57779-6.
|
| 35. |
Knights AJ, Redding SJ, Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol, 2023, 35(2): 128-134.
|
| 36. |
Dainese P, Wyngaert KV, De Mits S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review. Osteoarthritis Cartilage, 2022, 30(4): 516-534.
|
| 37. |
Adam MS, Zhuang H, Ren X, et al. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne), 2024, 15: 1393550. doi: 10.3389/fendo.2024.1393550.
|
| 38. |
Yang Y, Shi J, Yu J, et al. New posttranslational modification lactylation brings new inspiration for the treatment of rheumatoid arthritis. J Inflamm Res, 2024, 17: 11845-11860.
|
| 39. |
Hu J, Jin Z, Gao Y, et al. Global profiling of lactylation proteomics and specific lactylated site validation in rheumatoid arthritis patients. J Proteome Res, 2025, 24(4): 1732-1744.
|
| 40. |
Liu W, Yang R, Zhan Y, et al. Lactate and lactylation: emerging roles in autoimmune diseases and metabolic reprogramming. Front Immunol, 2025, 16: 1589853. doi: 10.3389/fimmu.2025.1589853.
|
| 41. |
Arra M, Swarnkar G, Ke K, et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun, 2020, 11(1): 3427. doi: 10.1038/s41467-020-17242-0.
|
| 42. |
韋艷, 田艾. 乳酸/乳酸化修飾調控巨噬細胞參與牙周病發生的研究進展. 口腔醫學研究, 2024, 40(7): 578-582.
|
| 43. |
Rahmati M, Nalesso G, Mobasheri A, et al. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res Rev, 2017, 40: 20-30.
|
| 44. |
Fu B, Shen J, Zou X, et al. Matrix stiffening promotes chondrocyte senescence and the osteoarthritis development through downregulating HDAC3. Bone Res, 2024, 12(1): 32. doi: 10.1038/s41413-024-00333-9.
|
| 45. |
Miao Y, Chen Y, Xue F, et al. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine, 2022, 76: 103847. doi: 10.1016/j.ebiom.2022.103847.
|
| 46. |
Guo Z, Lin J, Sun K, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol, 2022, 13: 791376. doi: 10.3389/fphar.2022.791376.
|
| 47. |
Jahr H. HDACi and Nrf2: not from alpha to omega but from acetylation to OA. Arthritis Res Ther, 2015, 17: 381. doi: 10.1186/s13075-015-0885-x.
|
| 48. |
Fu Y, Kinter M, Hudson J, et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol, 2016, 68(8): 1887-1898.
|
| 49. |
Assi R, Cherifi C, Cornelis FMF, et al. Inhibition of KDM7A/B histone demethylases restores H3K79 methylation and protects against osteoarthritis. Ann Rheum Dis, 2023, 82(7): 963-973.
|
| 50. |
Zheng H, Aihaiti Y, Cai Y, et al. The m6A/m1A/m5C-related methylation modification patterns and immune landscapes in rheumatoid arthritis and osteoarthritis revealed by microarray and single-cell transcriptome. J Inflamm Res, 2023, 16: 5001-5025.
|
| 51. |
An S, Yao Y, Hu H, et al. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis, 2023, 14(7): 457. doi: 10.1038/s41419-023-05952-4.
|
| 52. |
Wang X, Fan W, Li N, et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol, 2023, 24(1): 87. doi: 10.1186/s13059-023-02931-y.
|