| 1. |
Morgan P. What’s new in hip replacement. J Bone Joint Surg (Am), 2022, 104(18): 1599-1604.
|
| 2. |
Tirta M, Rahbek O, Kold S, et al. Risk factors for developmental dysplasia of the hip before 3 months of age: a meta-analysis. JAMA Netw Open, 2025, 8(1): e2456153. doi: 10.1001/jamanetworkopen.2024.56153.
|
| 3. |
Funahashi H, Osawa Y, Takegami Y, et al. What are the sex-based differences of acetabular coverage features in hip dysplasia? Clin Orthop Relat Res, 2024, 482(11): 1971-1983.
|
| 4. |
Tian FD, Zhao DW, Wang W, et al. Prevalence of developmental dysplasia of the hip in chinese adults: a cross-sectional survey. Chin Med J (Engl), 2017, 130(11): 1261-1268.
|
| 5. |
劉懿, 李叔強, 程奇勝, 等. Crowe Ⅳ型發育性髖關節發育不良初次人工全髖關節置換術后翻修手術的研究進展. 中國修復重建外科雜志, 2023, 37(12): 1548-1555.
|
| 6. |
中華醫學會骨科學分會關節外科學組. 中國發育性髖關節發育不良診療指南(2023版). 中華解剖與臨床雜志, 2023, 28(8): 493-511.
|
| 7. |
Terjesen T, Horn J, Gunderson RB. Fifty-year follow-up of late-detected hip dislocation: clinical and radiographic outcomes for seventy-one patients treated with traction to obtain gradual closed reduction. J Bone Joint Surg (Am), 2014, 96(4): e28. doi: 10.2106/JBJS.M.00397.
|
| 8. |
Trudelle-Jackson E, Emerson R, Smith S. Outcomes of total hip arthroplasty: a study of patients one year postsurgery. J Orthop Sports Phys Ther, 2002, 32(6): 260-267.
|
| 9. |
Qian H, Wang X, Wang P, et al. Total hip arthroplasty in patients with crowe Ⅲ/Ⅳdevelopmental dysplasia of the hip: acetabular morphology and reconstruction techniques. Orthop Surg, 2023, 15(6): 1468-1476.
|
| 10. |
Du H, Qiao H, Zhai ZJ, et al. Acetabular component position significantly influences the rebalancing of pelvic sagittal inclination following total hip arthroplasty in patients with Crowe type Ⅲ/Ⅳ developmental dysplasia of the hip. Bone Joint J, 2025, 107-B(2): 149-156.
|
| 11. |
Ravanbod H, Gharanizadeh K, Mirghaderi P, et al. Subtrochanteric shortening osteotomy provides superior function to trochanter slide osteotomy in THA for patients with unilateral Crowe type Ⅳ dysplasia at a minimum of 3 years. Clin Orthop Relat Res, 2024, 482(6): 1038-1047.
|
| 12. |
Greber EM, Pelt CE, Gililland JM, et al. Challenges in total hip arthroplasty in the setting of developmental dysplasia of the hip. J Arthroplasty, 2017, 32(9S): S38-S44.
|
| 13. |
Gharanizadeh K, Mahmoudi M, Shiva F, et al. Assessing leg length discrepancy is necessary before arthroplasty in patients with unilateral Crowe type Ⅳ hip dislocation. Clin Orthop Relat Res, 2023, 481(9): 1783-1789.
|
| 14. |
Poursalehian M, Hassanzadeh A, Shafiei SH, et al. Mid- to long-term outcomes and complications of total hip arthroplasty in patients who have Crowe Ⅳ developmental dysplasia of the hip: a systematic review and meta-analysis. J Arthroplasty, 2025, 40(2): 530-539.
|
| 15. |
Fontalis A, Kayani B, Plastow R, et al. A prospective randomized controlled trial comparing CT-based planning with conventional total hip arthroplasty versus robotic arm-assisted total hip arthroplasty. Bone Joint J, 2024, 106-B(4): 324-335.
|
| 16. |
付君, 倪明, 陳繼營. 數字骨科技術引領關節外科發展新方向. 中華醫學雜志, 2022, 102(1): 9-14.
|
| 17. |
裴國獻. 數字骨科: 骨科領域的第三次技術浪潮. 中華創傷骨科雜志, 2019, 21(01): 3-5.
|
| 18. |
Gurung B, Liu P, Harris PDR, et al. Artificial intelligence for image analysis in total hip and total knee arthroplasty : a scoping review. Bone Joint J, 2022, 104-B(8): 929-937.
|
| 19. |
Braun S, Somerville L, Vasarhelyi E, et al. Minimum 2-year outcome of a novel three-dimensional-printed porous titanium acetabular shell for complex primary and revision total hip arthroplasty. J Arthroplasty, 2025, 40(8S1): S190-S195.
|
| 20. |
Ng N, Gaston P, Simpson PM, et al. Robotic arm-assisted versus manual total hip arthroplasty: a systematic review and meta-analysis. Bone Joint J, 2021, 103-B(6): 1009-1020.
|
| 21. |
Shibue K. Artificial intelligence and machine learning in clinical medicine. N Engl J Med, 2023, 388(25): 2398. doi: 10.1056/NEJMc2305287.
|
| 22. |
Song J, Wang GC, Wang SC, et al. Artificial intelligence in orthopedics: fundamentals, current applications, and future perspectives. Mil Med Res, 2025, 12(1): 42. doi: 10.1186/s40779-025-00633-z.
|
| 23. |
Polisetty TS, Jain S, Pang M, et al. Concerns surrounding application of artificial intelligence in hip and knee arthroplasty : a review of literature and recommendations for meaningful adoption. Bone Joint J, 2022, 104-B(12): 1292-1303.
|
| 24. |
Karnuta JM, Luu BC, Haeberle HS, et al. Machine learning outperforms regression analysis to predict next-season major league baseball player injuries: epidemiology and validation of 13, 982 player-years from performance and injury profile trends, 2000-2017. Orthop J Sports Med, 2020, 8(11): 2325967120963046. doi: 10.1177/2325967120963046.
|
| 25. |
Frysz M, Faber BG, Ebsim R, et al. Machine learning-derived acetabular dysplasia and cam morphology are features of severe hip osteoarthritis: findings from UK Biobank. J Bone Miner Res, 2022, 37(9): 1720-1732.
|
| 26. |
沈宗旺, 廖世杰, 丁曉飛, 等. 人工智能技術在發育性髖關節發育不良診療中的應用進展. 中華骨科雜志, 2024, 44(5): 329-335.
|
| 27. |
Zheng S, Zhu J, Chen Z, et al. AI-assisted direct anterior approach versus posterolateral approach in total hip arthroplasty: a retrospective cohort study based on artifact-reduced CT 3D reconstruction. Front Bioeng Biotechnol, 2025, 13: 1509200. doi: 10.3389/fbioe.2025.1509200.
|
| 28. |
Wu L, Yang XC, Wu J, et al. Short-term outcome of artificial intelligence-assisted preoperative three-dimensional planning of total hip arthroplasty for developmental dysplasia of the hip compared to traditional surgery. Jt Dis Relat Surg, 2023, 34(3): 571-582.
|
| 29. |
Zheng Q, She H, Zhang Y, et al. Application of artificial intelligence-based three dimensional digital reconstruction technology in precision treatment of complex total hip arthroplasty. Int Orthop, 2025, 49(8): 1839-1851.
|
| 30. |
Xie H, Yi J, Huang Y, et al. Application and evaluation of artificial intelligence 3D preoperative planning software in developmental dysplasia of the hip. J Orthop Surg Res, 2024, 19(1): 176. doi: 10.1186/s13018-024-04588-0.
|
| 31. |
Lu Z, Yuan C, Xu Q, et al. AI-assisted 3D versus conventional 2D preoperative planning in total hip arthroplasty for Crowe type Ⅱ-Ⅳ high hip dislocation: a two-year retrospective study. J Orthop Surg Res, 2025, 20(1): 777. doi: 10.1186/s13018-025-06208-x.
|
| 32. |
Meermans G, Fawley D, Zagra L, et al. Accuracy of cup placement compared with preoperative surgeon targets in primary total hip arthroplasty using standard instrumentation and techniques: a global, multicenter study. J Orthop Traumatol, 2024, 25(1): 25. doi: 10.1186/s10195-024-00766-2.
|
| 33. |
Yang W, Gao T, Liu X, et al. Clinical application of artificial intelligence-assisted three-dimensional planning in direct anterior approach hip arthroplasty. Int Orthop, 2024, 48(3): 773-783.
|
| 34. |
La Camera F, Di Matteo V, Pisano A, et al. Mid-term clinical and radiographic results of complex hip revision arthroplasty based on 3d life-sized model: a prospective case series. J Clin Med, 2024, 13(18): 5496. doi: 10.3390/jcm13185496.
|
| 35. |
Ling TX, Li JL, Zhou K, et al. The use of porous tantalum augments for the reconstruction of acetabular defect in primary total hip arthroplasty. J Arthroplasty, 2018, 33(2): 453-459.
|
| 36. |
Chung BC, Heckmann ND, Gallo MC, et al. Trabecular metal augments during complex primary total hip arthroplasty. Arthroplast Today, 2024, 27: 101435. doi: 10.1016/j.artd.2024.101435.
|
| 37. |
Moralidou M, Henckel J, Di Laura A, et al. Guiding prosthetic femoral version using 3D-printed patient-specific instrumentation (PSI): a pilot study. 3D Print Med, 2023, 9(1): 11. doi: 10.1186/s41205-023-00168-w.
|
| 38. |
Chen X, Li S, Wang Y, et al. Artificially intelligent three-dimensionally-printed patient-specific instrument improves total hip arthroplasty accuracy. J Arthroplasty, 2023, 38(10): 2060-2067.
|
| 39. |
Meng M, Wang J, Sun T, et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat, 2022, 34: 22-41.
|
| 40. |
Zheng H, Feng E, Xiao Y, et al. Is AI 3D-printed PSI an accurate option for patients with developmental dysplasia of the hip undergoing THA? BMC Musculoskelet Disord, 2024, 25(1): 308. doi: 10.1186/s12891-024-07449-3.
|
| 41. |
Patel AB, Wagle RR, Usrey MM, et al. Guidelines for implant placement to minimize impingement during activities of daily living after total hip arthroplasty. J Arthroplasty, 2010, 25(8): 1275-1281.
|
| 42. |
Wang C, Xiao H, Yang W, et al. Accuracy and practicability of a patient-specific guide using acetabular superolateral rim during THA in Crowe Ⅱ/Ⅲ DDH patients: a retrospective study. J Orthop Surg Res, 2019, 14(1): 19. doi: 10.1186/s13018-018-1029-1.
|
| 43. |
Yu H, Xu M, Duan Q, et al. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater, 2024, 19(4). doi: 10.1088/1748-605X/ad46d2.
|
| 44. |
Sugano N, Ando W, Tamura K, et al. The use of porous titanium acetabular augments in primary total hip arthroplasty for hip dysplasia or rapidly destructive coxopathy. Bone Jt Open, 2025, 6(5 Supple A): 57-64.
|
| 45. |
柴偉, 張博涵, 孔祥朋, 等. 可視化智能輔助髖臼鏡像重建技術治療CroweⅡ、Ⅲ型發育性髖關節發育不良. 中華骨科雜志, 2024, 44(6): 345-353.
|
| 46. |
Zhao D, Li J, Ying J, et al. Application of three-dimensional printing integrated acetabular prosthesis in the treatment of hip dysplasia in total hip arthroplasty. J Arthroplasty, 2025, 40(11): 2938-2947.
|
| 47. |
Cheng L, Liu Y, Wang L, et al. Integrated acetabular prosthesis versus bone grafting in total hip arthroplasty for Crowe type Ⅱ and Ⅲ hip dysplasia: a retrospective case-control study. Orthop Surg, 2024, 16(10): 2401-2409.
|
| 48. |
林劍浩. 機器人輔助人工關節置換的應用現狀與前景. 中華骨科雜志, 2023, 43(1): 5-8.
|
| 49. |
Ando W, Takao M, Hamada H, et al. Comparison of the accuracy of the cup position and orientation in total hip arthroplasty for osteoarthritis secondary to developmental dysplasia of the hip between the Mako robotic arm-assisted system and computed tomography-based navigation. Int Orthop, 2021, 45(7): 1719-1725.
|
| 50. |
Sato K, Sato A, Okuda N, et al. A propensity score-matched comparison between Mako robotic arm-assisted system and conventional technique in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. Arch Orthop Trauma Surg, 2023, 143(5): 2755-2761.
|
| 51. |
Hecht CJ, Nedder VJ, Porto JR, et al. Are robotic-assisted and computer-navigated total hip arthroplasty associated with superior outcomes in patients who have hip dysplasia? J Orthop, 2024, 53: 125-132.
|
| 52. |
Konishi T, Sato T, Hamai S, et al. Robotic arm-assisted system improved accuracy of cup position and orientation in cementless total hip arthroplasty for dysplastic hips: a comparison among groups with manual placement, computed tomography-based navigation, and robotic surgery. Arthroplast Today, 2024, 28: 101461. doi: 10.1016/j.artd.2024.101461.
|
| 53. |
Iyetin Y, Koraman E, Akan M, et al. Comparison of robotic and conventional total hip arthroplasty in Crowe type 3-4 hip dysplasia: a retrospective analysis of radiological precision and early clinical outcomes. Hip Int, 2025. doi: 10.1177/11207000251385064.
|
| 54. |
Hayashi S, Hashimoto S, Kuroda Y, et al. Robotic-arm assisted THA can achieve precise cup positioning in developmental dysplasia of the hip : a case control study. Bone Joint Res, 2021, 10(10): 629-638.
|
| 55. |
李毅, 任鵬, 張國強, 等. 手持式全程可視化導航與機器人輔助全髖關節置換的對比研究. 中華骨科雜志, 2024, 44(21): 1393-1400.
|
| 56. |
Hayashi S, Kuroda Y, Nakano N, et al. Accuracy of portable navigation during THA in patients with severe developmental dysplasia of hip. Arch Orthop Trauma Surg, 2024, 144(5): 2429-2435.
|
| 57. |
Maldonado DR, Go CC, Kyin C, et al. Robotic arm-assisted total hip arthroplasty is more cost-effective than manual total hip arthroplasty: a markov model analysis. J Am Acad Orthop Surg, 2021, 29(4): e168-e177.
|