| 1. |
康焰, 唐之韻. 重癥創傷: 重癥醫學有不可替代的作用. 中華重癥醫學電子雜志, 2016, 2(1): 26-31.
|
| 2. |
熊德鑫, 盛志勇. 創傷外科領域中的幾個微生態問題. 中國微生態學雜志, 1992, 4(2): 71-74.
|
| 3. |
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med, 2016, 375(24): 2369-2379.
|
| 4. |
Pai R, Kang G. Microbes in the gut: a digestable account of host-symbiont interactions. Indian J Med Res, 2008, 128(5): 587-594.
|
| 5. |
唐立. 人類腸道微生態基礎與應用研究進展. 沈陽醫學院學報, 2016, 18(5): 321-324.
|
| 6. |
B?ckhed F, Fraser CM, Ringel Y, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe, 2012, 12(5): 611-622.
|
| 7. |
陳衛, 田培郡, 張程程, 等. 腸道菌群與人體健康的研究熱點與進展. 中國食品學報, 2017, 17(2): 1-9.
|
| 8. |
張雅婷, 孫月梅, 張娟紅, 等. 腸道菌群與藥物相互作用機制的研究進展. 中國藥理學通報, 2020, 36(12): 1650-1655.
|
| 9. |
王正國. 創傷基礎. 武漢: 湖北科學技術出版社, 2016: 1-2.
|
| 10. |
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159): 1789-1858.
|
| 11. |
國家統計局. 中國統計年鑒2017. [2017-10-13]. http://www.stats.gov.cn/tjsj/tjcbw/201710/t20171012_1541643.html.
|
| 12. |
Leilei D, Pengpeng Y, Haagsma JA, et al. The burden of injury in China, 1990-2017: findings from the Global Burden of Disease Study 2017. Lancet Public Health, 2019, 4(9): e449-e461.
|
| 13. |
《中國慢性病預防與控制》編輯部. 衛生部公布我國傷害預防報告. 中國慢性病預防與控制, 2007, 15(5): 409.
|
| 14. |
創傷醫學新動向: 救治年度報告啟動編寫 十家醫院加入百度創傷地圖. [2020-10-17]. https://new.qq.com/omn/20201017/20201017A09RS200.html.
|
| 15. |
聯合國報告: 本世紀中期天災將威脅全球15億. [2010-11-12]. http://www.chinanews.com/gj/2010/11-12/2653061.shtml.
|
| 16. |
李玉恒, 武文豪, 劉彥隨. 近百年全球重大災害演化及對人類社會彈性能力建設的啟示. 中國科學院院刊, 2020, 35(3): 345-352.
|
| 17. |
Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet, 2008, 372(9633): 139-144.
|
| 18. |
國家統計局. 醫療衛生機構住院病人手術人次(萬人次). https://data.stats.gov.cn/search.htm?s=%E6%89%8B%E6%9C%AF%E5%85%A8%E5%9B%BD2019.
|
| 19. |
黃寧, 李著華. 病理生理學. 北京: 科學出版社, 2013: 81, 85.
|
| 20. |
Burmeister DM, Johnson TR, Lai Z, et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J Trauma Acute Care Surg, 2020, 88(5): 579-587.
|
| 21. |
Nicholson SE, Merrill D, Zhu C, et al. Polytrauma independent of therapeutic intervention alters the gastrointestinal microbiome. Am J Surg, 2018, 216(4): 699-705.
|
| 22. |
Nicholson SE, Burmeister DM, Johnson TR, et al. A prospective study in severely injured patients reveals an altered gut microbiome is associated with transfusion volume. J Trauma Acute Care Surg, 2019, 86(4): 573-582.
|
| 23. |
Howard BM, Kornblith LZ, Christie SA, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open, 2017, 2(1): e000108. doi: 10.1136/tsaco-2017-000108.
|
| 24. |
Corcione S, Lupia T, De Rosa FG, et al. Microbiome in the setting of burn patients: implications for infections and clinical outcomes. Burns Trauma, 2020, 8: tkaa033. doi: 10.1093/burnst/tkaa033.
|
| 25. |
Urban RJ, Pyles RB, Stewart CJ, et al. Altered fecal microbiome years after traumatic brain injury. J Neurotrauma, 2020, 37(8): 1037-1051.
|
| 26. |
Zhang C, Zhang W, Zhang J, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med, 2018, 16(1): 353. doi: 10.1186/s12967-018-1735-9.
|
| 27. |
Kigerl KA, Mostacada K, Popovich PG. Gut microbiota are disease-modifying factors after traumatic spinal cord injury. Neurotherapeutics, 2018, 15(1): 60-67.
|
| 28. |
Nicholson SE, Watts LT, Burmeister DM, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner. Shock, 2019, 52(2): 240-248.
|
| 29. |
Appiah SA, Foxx CL, Langgartner D, et al. Evaluation of the gut microbiome in association with biological signatures of inflammation in murine polytrauma and shock. Sci Rep, 2021, 11(1): 6665. doi: 10.1038/s41598-021-85897-w.
|
| 30. |
Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 43-54.
|
| 31. |
王娜, 周勇, 李卡. 腸道菌群與腹部手術后胃腸功能障礙的相關性研究進展. 中國普外基礎與臨床雜志, 2022, 29(2): 248-254.
|
| 32. |
Treangen TJ, Wagner J, Burns MP, et al. Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front Immunol, 2018, 9: 2757. doi: 10.3389/fimmu.2018.02757.
|
| 33. |
Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr, 2013, 98(1): 16-24.
|
| 34. |
俞美紅, 俞秀麗, 陳春雷, 等. 原位肝移植大鼠腸道微生態狀況研究. 中華外科雜志, 2008, 46(15): 1139-1142.
|
| 35. |
Patel JJ, Rosenthal MD, Miller KR, et al. The gut in trauma. Curr Opin Crit Care, 2016, 22(4): 339-346.
|
| 36. |
Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 2014, 147(5): 1055-1063.e8.
|
| 37. |
Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe, 2007, 2(3): 204. doi: 10.1016/j.chom.2007.08.002.
|
| 38. |
Sundman MH, Chen NK, Subbian V, et al. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun, 2017, 66: 31-44.
|
| 39. |
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest, 2021, 131(12): e143777. doi: 10.1172/JCI143777.
|
| 40. |
Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res, 2021, 1753: 147225. doi: 10.1016/j.brainres.2020.147225.
|
| 41. |
You W, Zhu Y, Wei A, et al. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile. J Neurotrauma, 2022, 37(1-2): 227-237.
|
| 42. |
Bazzocchi G, Turroni S, Bulzamini MC, et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep, 2021, 11(1): 12743. doi: 10.1038/s41598-021-92027-z.
|
| 43. |
Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: A review. Life Sci, 2021, 266: 118865.
|
| 44. |
Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin, 2005, 21(2): 177-196.
|
| 45. |
Kigerl KA, Hall JC, Wang L, et al. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med, 2016, 213(12): 2603-2620.
|
| 46. |
George AK, Behera J, Homme RP, et al. Rebuilding microbiome for mitigating traumatic brain injury: Importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol, 2021, 58(8): 3614-3627.
|
| 47. |
Zhan G, Hua D, Huang N, et al. Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota. Aging (Albany NY), 2019, 11(6): 1778-1790.
|
| 48. |
Liu Z, Li C, Huang M, et al. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterol, 2015, 15: 34. doi: 10.1186/s12876-015-0260-z.
|
| 49. |
Jing Y, Yu Y, Bai F, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 2021, 9(1): 59. doi: 10.1186/s40168-021-01007-y.
|
| 50. |
Schmidt EKA, Torres-Espin A, Raposo PJF, et al. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS One, 2020, 15(1): e0226128. doi: 10.1371/journal.pone.0226128.
|
| 51. |
Du D, Tang W, Zhou C, et al. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev, 2021, 2021: 5816837. doi: 10.1155/2021/5816837.
|
| 52. |
Ma Y, Liu T, Fu J, et al. Lactobacillus acidophilus exerts neuroprotective effects in mice with traumatic brain injury. J Nutr, 2019, 149(9): 1543-1552.
|
| 53. |
Li H, Sun J, Du J, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil, 2018, 30(5): e13260. doi: 10.1111/nmo.13260.
|
| 54. |
史成和, 張沂, 聶玉瓊. 天然藥物保護創傷后腸道屏障功能的研究進展. 人民軍醫, 2013, 56(6): 712-714.
|
| 55. |
張振顯. 姜黃素對大鼠脊髓損傷后微生物多樣性及脊髓轉錄組學影響的研究. 延安: 延安大學, 2019.
|
| 56. |
王金軒. 大黃對急性閉合性顱腦損傷患者腸道菌群的影響. 山東中醫雜志, 2009, 28(1): 25-26.
|
| 57. |
王穎. 電針對重度脊髓損傷大鼠排便功能及腸道微生態調節作用的研究. 上海: 上海體育學院, 2020.
|
| 58. |
張劍. TLR5-RA在腸粘膜固有層樹突狀細胞抵御創傷性失血性休克后腸道細菌移位中的作用及機制研究. 浙江: 浙江大學, 2017.
|
| 59. |
溫聯溥. 機械性創傷對SD大鼠盲腸黏膜的損傷及GLP-2對其的保護作用. 大連: 大連醫科大學, 2018.
|