| 1. |
Williams GW, Berg NK, Reskallah A, et al. Acute respiratory distress syndrome. Anesthesiology, 2021, 134(2): 270-282.
|
| 2. |
Hung CF, Holton S, Chow YH, et al. Pericyte-like cells undergo transcriptional reprogramming and distinct functional adaptations in acute lung injury. FASEB J, 2021, 35(4): e21323.
|
| 3. |
Skowrońska M, Skrzyńska M, Machowski M, et al. Plasma growth differentiation factor 15 levels for predicting serious adverse events and bleeding in acute pulmonary embolism: a prospective observational study. Pol Arch Intern Med, 2020, 130(9): 757-765.
|
| 4. |
Ebrahimi F, Wolffenbuttel C, Blum CA, et al. Fibroblast growth factor 21 predicts outcome in community-acquired pneumonia: secondary analysis of two randomised controlled trials. Eur Respir J, 2019, 53(2): 1800973.
|
| 5. |
Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23): 2526-2533.
|
| 6. |
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet, 2021, 398(10300): 622-637.
|
| 7. |
劉勝崗, 楊紅忠. 血管生成素樣蛋白4(Angptl4)在肺纖維化過程中的作用. 中國醫師雜志, 2018, 20(5): 712-714,719.
|
| 8. |
Wu YQ, Shen YC, Wang H, et al. Serum angiopoietin-like 4 is over-expressed in COPD patients: association with pulmonary function and inflammation. Eur Rev Med Pharmacol Sci, 2016, 20(1): 44-53.
|
| 9. |
Song HY, Chen Q, Xie SP, et al. GDF-15 prevents lipopolysaccharide-mediated acute lung injury via upregulating SIRT1. Biochem Biophys Res Commun, 2020, 526(2): 439-446.
|
| 10. |
Gao J, Liu QH, Li JL, et al. Fibroblast growth factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury. Int Immunopharmacol, 2020, 80(3): 106219.
|
| 11. |
Li L, Foo BJW, Kwok KW, et al. Antibody treatment against angiopoietin-like 4 reduces pulmonary edema and injury in secondary pneumococcal pneumonia. mBio, 2019, 10(3): e02469-18.
|
| 12. |
Rosenberg BJ, Hirano M, Quinzii CM, et al. Growth differentiation factor-15 as a biomarker of strength and recovery in survivors of acute respiratory failure. Thorax, 2019, 74(11): 1099-1101.
|
| 13. |
張放, 郭樹彬, 姬文卿, 等. 外周血成纖維細胞生長因子-21在膿毒癥及感染性休克中的表達. 中國急救醫學, 2020, 40(7): 644-648.
|
| 14. |
Sehgal IS, Agarwal R, Dhooria S, et al. Risk stratification of acute respiratory distress syndrome using a PaO2: FiO2 threshold of 150 mmHg: a retrospective analysis from an Indian intensive care unit. Lung India, 2020, 37(6): 473-478.
|
| 15. |
Yoo JW, Ju SM, Lee SJ, et al. Geriatric nutritional risk index is associated with 30-day mortality in patients with acute respiratory distress syndrome. Medicine (Baltimore), 2020, 99(25): e20671.
|
| 16. |
Hu J, Liu L, Zeng XH, et al. Prognostic value of angiopoietin-like 4 in patients with acute respiratory distress syndrome. Shock, 2021, 56(3): 403-411.
|
| 17. |
尚明升, 高延秋, 賈寶輝, 等. 生長分化因子-15和血管外肺水指數在ARDS患者嚴重程度分級及預后預測中的價值. 中華危重病急救醫學, 2020, 32(10): 1226-1230.
|
| 18. |
Li X, Shen H, Zhou TH, et al. Does an increase in serum FGF21 level predict 28-day mortality of critical patients with sepsis and ARDS?. Respir Res, 2021, 22(1): 182.
|