| 1. |
Venkatesan P. GOLD COPD report: 2023 update. Lancet Respir Med, 2023, 11(1): 18.
|
| 2. |
Meghji J, Mortimer K, Agusti A, et al. Improving lung health in low-income and middle-income countries: from challenges to solutions. Lancet, 2021, 397(10277): 928-940.
|
| 3. |
Zhou MG, Wang HD, Zeng XY, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204): 1145-1158.
|
| 4. |
Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One, 2010, 5(1): e8578.
|
| 5. |
Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax, 2018, 73(4): 331-338.
|
| 6. |
Tsay JJ, Segal LN. Could the sputum microbiota be a biomarker that predicts mortality after acute exacerbations of chronic obstructive pulmonary disease?. Am J Respir Crit Care Med, 2019, 199(10): 1175-1176.
|
| 7. |
Millares L, Pascual S, Montón C, et al. Relationship between the respiratory microbiome and the severity of airflow limitation, history of exacerbations and circulating eosinophils in COPD patients. BMC Pulm Med, 2019, 19(1): 112.
|
| 8. |
Leitao Filho FS, Alotaibi NM, Ngan D, et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am J Respir Crit Care Med, 2019, 199(10): 1205-1213.
|
| 9. |
Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J, 2016, 47(4): 1082-1092.
|
| 10. |
Wang Z, Locantore N, Haldar K, et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am J Respir Crit Care Med, 2021, 203(12): 1488-1502.
|
| 11. |
Liu HY, Zheng DW, Lin YX, et al. Association of sputum microbiome with clinical outcome of initial antibiotic treatment in hospitalized patients with acute exacerbations of COPD. Pharmacol Res, 2020, 160: 105095.
|
| 12. |
Wang Z, Maschera B, Lea S, et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease. Respir Res, 2019, 20(1): 113.
|
| 13. |
谷亮, 吳波. 高通量測序下吸入性糖皮質激素對老年慢阻肺患者痰液微生物組學的影響研究. 貴州醫藥, 2021, 45(5): 745-746.
|
| 14. |
Yang CY, Li SW, Chin CY, et al. Association of exacerbation phenotype with the sputum microbiome in chronic obstructive pulmonary disease patients during the clinically stable state. J Transl Med, 2021, 19(1): 121.
|
| 15. |
Wang J, Chai JM, Sun LN, et al. The sputum microbiome associated with different sub-types of AECOPD in a Chinese cohort. BMC Infect Dis, 2020, 20(1): 610.
|
| 16. |
Tangedal S, Nielsen R, Aanerud M, et al. Sputum microbiota and inflammation at stable state and during exacerbations in a cohort of chronic obstructive pulmonary disease (COPD) patients. PLoS One, 2019, 14(9): e0222449.
|
| 17. |
Huang YJ, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52(8): 2813-2823.
|
| 18. |
Mayhew D, Devos N, Lambert C, et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73(5): 422-430.
|
| 19. |
Einarsson GG, Comer DM, McIlreavey L, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 2016, 71(9): 795-803.
|
| 20. |
齊玉晶, 王哲, 孫雪皎, 等. 基于16S rRNA基因高通量測序分析慢性阻塞性肺疾病急性加重患者的誘導痰微生態多樣性. 中國呼吸與危重監護雜志, 2020, 19(4): 359-365.
|
| 21. |
Dicker AJ, Huang JTJ, Lonergan M, et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2021, 147(1): 158-167.
|
| 22. |
Sun Z, Zhu QL, Shen Y, et al. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci, 2020, 36(2): 107-113.
|
| 23. |
Chotirmall SH, Gellatly SL, Budden KF, et al. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology, 2017, 22(2): 240-250.
|
| 24. |
Dickson RP, Erb-Downward JR, Freeman CM, et al. Bacterial topography of the healthy human lower respiratory tract. mBio, 2017, 8(1): e02287-16.
|
| 25. |
李玉姣, 程小剛, 錢飛, 等. 健康成人口腔微生物組成及功能的宏基因組學研究. 口腔疾病防治, 2022, 30(8): 533-541.
|
| 26. |
康吉哲, WANG Wei, 葉俊杰, 等. 吸煙與非吸煙者口腔微生物多樣性形成機制對比分析. 口腔醫學研究, 2022, 38(10): 986-990.
|
| 27. |
Liu HY, Zhang SY, Yang WY, et al. Oropharyngeal and sputum microbiomes are similar following exacerbation of chronic obstructive pulmonary disease. Front Microbiol, 2017, 8: 1163.
|
| 28. |
盛美玲, 汪群智. 慢性阻塞性肺疾病急性加重風險高危與低危患者呼吸道微生態系統差異分析. 臨床肺科雜志, 2020, 25(12): 1787-1790.
|
| 29. |
Diao WQ, Shen N, Du YP, et al. Symptom-related sputum microbiota in stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2018, 13: 2289-2299.
|
| 30. |
Leung JM, Tiew PY, Mac Aogáin M, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology, 2017, 22(4): 634-650.
|
| 31. |
Yadava K, Pattaroni C, Sichelstiel AK, et al. Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies. Am J Respir Crit Care Med, 2016, 193(9): 975-987.
|
| 32. |
Rigauts C, Aizawa J, Taylor SL, et al. Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. Eur Respir J, 2022, 59(5): 2101293.
|
| 33. |
婁紅超, 謝漢華, 盧乃棉. 泛福舒對老年COPD患者的肺功能和細胞免疫力的分析. 中華肺部疾病雜志(電子版), 2021, 14(3): 315-317.
|
| 34. |
錢東林, 高翔, 李翔翔, 等. 泛福舒膠囊治療支氣管哮喘患兒的臨床研究. 中國臨床藥理學雜志, 2020, 36(21): 3407-3409, 3417.
|