Citation: 張珂煜, 邵棟, 趙亞昆, 田燕歌. 生物標志物聯合影像學在肺結節診斷中的研究進展. Chinese Journal of Respiratory and Critical Care Medicine, 2025, 24(2): 128-134. doi: 10.7507/1671-6205.202405056 Copy
Copyright ? the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
| 1. | 中華醫學會呼吸病學分會肺癌學組, 中國肺癌防治聯盟專家組. 肺結節診治中國專家共識(2018年版). 中華結核和呼吸雜志, 2018, 41(10): 763-771. |
| 2. | Liang X, Kong Y, Shang H, et al. Computed tomography findings, associated factors, and management of pulmonary nodules in 54, 326 healthy individuals. J Cancer Res Ther, 2022, 18(7): 2041-2048. |
| 3. | 譚雙平, 張彤, 祖江林, 等. 深度學習驅動的CT影像肺結節檢測: 挑戰、進展和展望. 中國醫療器械雜志, 2023, 47(2): 163-172. |
| 4. | Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood), 2018, 243(3): 213-221. |
| 5. | Shen C, Wu Q, Xia Q, et al. Establishment of a malignancy and benignancy prediction model of sub-centimeter pulmonary ground-glass nodules based on the inflammation-cancer transformation theory. Front Med (Lausanne), 2022, 9: 1007589. |
| 6. | Husari A, Hashem Y, Zaatari G, et al. Pomegranate juice prevents the formation of lung nodules secondary to chronic cigarette smoke exposure in an animal model. Oxid Med Cell Longev, 2017, 2017: 6063201. |
| 7. | Zhang Y, Liu Y, Wang J, et al. Atractylenolide II inhibits tumor-associated macrophages (TAMs)-induced lung cancer cell metastasis. Immunopharmacol Immunotoxicol, 2022, 44(2): 227-237. |
| 8. | Tian T, Lu J, Zhao W, et al. Associations of systemic inflammation markers with identification of pulmonary nodule and incident lung cancer in Chinese population. Cancer Med, 2022, 11(12): 2482-2491. |
| 9. | 姜文軍. 血清中IL-15、IL-6、TNF-β、IFN-γ、CRP、Beclin1與早期肺腺癌關系的研究. 安徽醫科大學, 2022. |
| 10. | Daly S, Rinewalt D, Fhied C, et al. Development and validation of a plasma biomarker panel for discerning clinical significance of indeterminate pulmonary nodules. J Thorac Oncol, 2013, 8(1): 31-36. |
| 11. | Liu CY, Xie WG, Wu S, et al. A comparative study on inflammatory factors and immune functions of lung cancer and pulmonary ground-glass attenuation. Eur Rev Med Pharmacol Sci, 2017, 21(18): 4098-4103. |
| 12. | 牛濤, 周逢海. 炎癥與腫瘤微環境. 中南大學學報(醫學版), 2023, 48(12): 1899-1913. |
| 13. | Yanagawa J, Tran LM, Salehi-Rad R, et al. Single-cell characterization of pulmonary nodules implicates suppression of immunosurveillance across early stages of lung adenocarcinoma. Cancer Res, 2023, 83(19): 3305-3319. |
| 14. | Hu X, Estecio MR, Chen RZ, et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun, 2021, 12(1): 687. |
| 15. | 李瑞琴, 金艷, 李偉, 等. 桂附地黃丸抗大鼠肺纖維化的作用及對外周血T淋巴細胞亞群的影響. 中華中醫藥學刊, 2016, 34(12): 2938-2940. |
| 16. | 朱德兵. 肺泡灌洗液中T淋巴細胞在早期周圍型肺癌的診斷價值研究. 昆明醫科大學, 2022. |
| 17. | Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med, 2019, 156: 33-46. |
| 18. | Frezzetti D, Gallo M, Maiello MR, et al. VEGF as a potential target in lung cancer. Expert Opin Ther Targets, 2017, 21(10): 959-966. |
| 19. | Seder CW, Kubasiak JC, Pithadia R, et al. Angiogenesis biomarkers may be useful in the management of patients with indeterminate pulmonary nodules. Ann Thorac Surg, 2015, 100(2): 429-436. |
| 20. | 呂春歌. 血管內皮生長因子C聯合CEA、CA199檢測對肺孤立性結節的臨床鑒別診斷價值. 河南外科學雜志, 2022, 28(6): 48-50. |
| 21. | Wang X, Leader JK, Wang R, et al. Vasculature surrounding a nodule: a novel lung cancer biomarker. Lung Cancer, 2017, 114: 38-43. |
| 22. | Ye S, Chen X, Yao Y, et al. Thioredoxin reductase as a novel and efficient plasma biomarker for the detection of non-small cell lung cancer: a large-scale, multicenter study. Sci Rep, 2019, 9(1): 2652. |
| 23. | 李莎, 惠開元, 孫文, 等. 硫氧還蛋白還原酶在肺癌臨床檢測中應用. 臨床軍醫雜志, 2020, 48(12): 1415-1417. |
| 24. | 居冠軍, 施民新, 樊懌輝, 等. 胸部CT聯合硫氧還蛋白還原酶檢測對孤立性肺結節良惡性的診斷價值. 交通醫學, 2023, 37(4): 397-399. |
| 25. | 卜亞偉. 硫氧還蛋白還原酶1(TrxR1)篩查早期非小細胞肺癌的臨床研究. 河北醫科大學, 2020. |
| 26. | 丁薇, 王保蘭, 李朋玲. 硫氧還蛋白還原酶聯合肺癌標志物對肺結節良惡性的診斷意義. 中華肺部疾病雜志(電子版), 2022, 15(5): 685-687. |
| 27. | 張國慶, 焦順昌. 新型腫瘤增殖指標―血清胸苷激酶1的臨床應用. 現代腫瘤醫學, 2012, 20(8): 1743-1745. |
| 28. | Chen ZH. Serological Thymidine kinase 1 is a biomarker for early detection of tumours—a health screening study on 35, 365 people, using a sensitive chemiluminescent dot blot assay. Sensors (Basel), 2011, 11(12): 11064-11080. |
| 29. | 周家田. 血清TK1、CEA、CYFRA21-1聯合胸部CT特征在肺結節診斷中的臨床價值. 成都醫學院, 2020. |
| 30. | 金蒙蒙, 葉元滋, 陳梅莉, 等. 肺癌患者血清胸苷激酶1的表達及其臨床意義. 實用醫學雜志, 2015, 31(3): 413-416. |
| 31. | Alegre MM, Weyant MJ, Bennett DT, et al. Serum detection of thymidine kinase 1 as a means of early detection of lung cancer. Anticancer Res, 2014, 34(5): 2145-2151. |
| 32. | 劉亞杰, 馬曉波. 腫瘤標志物GSTP1、CYFRA21-1及SCC-Ag對非小細胞肺癌的預后評估價值. 中國現代醫學雜志, 2020, 30(14): 42-46. |
| 33. | 馮小玲, 陳紅梅, 成軍霞, 等. 血清NSE、CYFRA21-1、SCC水平聯合CT灌注成像對肺結節良惡性病變的診斷價值. 標記免疫分析與臨床, 2020, 27(9): 1551-1555,1619. |
| 34. | 楊金生, 杜晚楠, 王景升. 多層螺旋CT聯合腫瘤標志物對孤立肺結節的診斷價值. 中國衛生工程學, 2023, 22(1): 101-102,106. |
| 35. | 萬輝, 高美玲, 林潔, 等. 不同類型的肺部磨玻璃結節患者術前免疫炎癥指標和癌胚抗原的比較. 溫州醫科大學學報, 2022, 52(7): 557-561. |
| 36. | Zhong S, Golpon H, Zardo P, et al. Mirnas in lung cancer. a systematic review identifies predictive and prognostic mirna candidates for precision medicine in lung cancer. Transl Res, 2021, 230: 164-196. |
| 37. | Sun ZQ, Shi K, Yang SX, et al. Effect of exosomal mirna on cancer biology and clinical applications. Mol Cancer, 2018, 17(1): 147. |
| 38. | Zhang JT, Qin H, Man Cheung FK, et al. Plasma extracellular vesicle microRNAs for pulmonary ground-glass nodules. J Extracell Vesicles, 2019, 8(1): 1663666. |
| 39. | 朱海龍. 低劑量螺旋CT聯合血漿miR-200b、miR-200c檢查鑒別診斷良惡性肺結節的價值. 中國療養醫學, 2022, 31(10): 1109-1112. |
| 40. | 程薪樾, 鮑文華, 王曉, 等. 血清miRNA-21檢測對肺結節研究的診斷價值. 齊齊哈爾醫學院學報, 2021, 42(7): 553-556. |
| 41. | Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell, 2016, 164(1-2): 57-68. |
| 42. | Chen N, Li G, Li H, et al. Plasma cfDNA as a potential treatment monitoring and prognostic index in patients withnon-small cell lung cancer. Cell Mol Biol (Noisy-le-grand). 2020, 66(5): 208-213. |
| 43. | Tao R, Cao W, Zhu F, et al. Liquid biopsies to distinguish malignant from benign pulmonary nodules. Thorac Cancer, 2021, 12(11): 1647-1655. |
| 44. | Szpechcinski A, Rudzinski P, Kupis W, et al. Plasma Cell-free DNA levels and integrity in patients with chest radiological findings nsclc versus benign lung nodules. Cancer Lett, 2016, 374(2): 202-207. |
| 45. | Gao H, Yang J, He L, et al. The diagnostic potential of SHOX2 and RASSF1A DNA methylation in early lung adenocarcinoma. Front Oncol, 2022, 12: 849024. |
| 46. | 楊敬平, 楊俊俊, 周嬋, 等. 肺泡灌洗液在肺癌早期診斷方面的研究進展. 中華肺部疾病雜志(電子版), 2020, 13(1): 97-99. |
| 47. | Zhang C, Yu W, Wang L, et al. DNA Methylation aAnalysis of the SHOX2 and RASSF1A panel in bronchoalveolar lavage fluid for lung cancer diagnosis. J Cancer, 2017, 8(17): 3585-3591. |
| 48. | 楊敬平. 肺泡灌洗液中SHOX2、RASSF1A甲基化及端粒酶活性檢測對肺結節良惡性鑒別診斷價值初探. 大連醫科大學, 2020. |
| 49. | 彭達明. 胸部低劑量CT在肺結節中的診斷效果. 現代醫學與健康研究電子雜志, 2023, 7(22): 94-96. |
| 50. | 於婧婧, 方金忠, 張文奇, 等. CT各征象對肺磨玻璃結節浸潤性及浸潤程度的鑒別價值. 全科醫學臨床與教育, 2023, 21(12): 1092-1095. |
| 51. | Schreuder A, Scholten ET, van Ginneken B, et al. Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice? Transl Lung Cancer Res, 2021, 10(5): 2378-2388. |
| 52. | 石逸秋, 沈雨雯, 劉可夫. 基于人工智能的CT肺結節評估的研究進展. 臨床放射學雜志, 2024, 43(3): 476-479. |
| 53. | 石逸秋, 沈雨雯, 陳劼, 等. CT定量參數預測肺磨玻璃結節病理類型的價值. 中國肺癌雜志, 2024, 27(2): 118-125. |
| 54. | 王志平, 郭偉, 真德智. 低劑量胸部CT在肺結節及早期肺癌篩查中的應用. 臨床放射學雜志, 2022, 41(7): 1298-1302. |
| 55. | 朱俊輝, 李思葉, 黃子康, 等. (18)F-FDG PET/CT原發灶攝取相對值及代謝參數對NSCLC縱隔淋巴結轉移的預測價值. 臨床放射學雜志, 2023, 42(10): 1584-1589. |
| 56. | 邱錢賽, 馮峰, 石健, 等. 18F-FDG PET/CT影像組學鑒別良、惡性高代謝孤立性肺結節. 中國醫學影像學雜志, 2022, 30(11): 1136-1142. |
| 57. | Saliho?lu YS, Uslu Erdemir R, Aydur Püren B, et al. Diagnostic performance of machine learning models based on 18F-FDG PET/CT radiomic features in the classification of solitary pulmonary nodules. Mol Imaging Radionucl Ther, 2022, 31(2): 82-88. |
| 58. | 江葉海, 蒲豆豆, 于楠. 基于磁共振成像的影像組學在肺癌中的研究進展. 磁共振成像, 2023, 14(7): 166-170. |
| 59. | Burris NS, Johnson KM, Larson PE, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology, 2016, 278(1): 239-246. |
| 60. | 江建芹, 崔磊, 胡春洪, 等. 胸部MR在肺癌篩查及肺結節隨診中的研究. 放射學實踐, 2022, 37(2): 274-280. |
| 61. | Liu H, Chen R, Tong C, Liang XW. MRI versus CT for the detection of pulmonary nodules: a meta-analysis. Medicine (Baltimore), 2021, 100(42): e27270. |
| 62. | 黃玉陽, 趙春玲, 張冰璐, 等. FUT7甲基化聯合CT影像特征預測肺腺癌發生風險的列線圖模型. 中國呼吸與危重監護雜志, 2024, 23(2): 95-104. |
| 63. | 何花, 胡文滕, 藺瑞江, 等. CT特征聯合腫瘤標志物預測肺磨玻璃結節腫瘤浸潤性的回顧性隊列研究. 中國胸心血管外科臨床雜志, 2022, 29(9): 1113-1119. |
| 64. | Zhang W, Duan X, Zhang Z, et al. Combination of CT and telomerase+ circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight, 2021, 6(11): e148182. |
| 65. | Zyla J, Marczyk M, Prazuch W, et al. Combining low-dose computer-tomography-based radiomics and serum metabolomics for diagnosis of malignant nodules in participants of lung cancer screening studies. Biomolecules, 2023, 14(1): 44. |
| 66. | Xu S, Ge J, Liu X, et al. The predictive value of chest computed tomography images, tumor markers, and metabolomics in the identification of benign and malignant pulmonary nodules. J Thorac Dis, 2023, 15(5): 2668-2679. |
| 67. | 吳少虹, 郭莉莉. 影像組學在肺癌中的應用. 放射學實踐, 2023, 38(6): 778-782. |
| 68. | Marmor HN, Jackson L, Gawel S, et al. Improving malignancy risk prediction of indeterminate pulmonary nodules with imaging features and biomarkers. Clin Chim Acta, 2022, 534: 106-114. |
| 69. | Patel N, Xu W, Deng Y, et al. Cross-scale integration of nano-sized extracellular vesicle-based biomarker and radiomics features for predicting suspected sub-solid pulmonary nodules. J Biomed Nanotechnol, 2021, 17(6): 1109-1122. |
| 70. | 趙佳佳, 邢媛媛, 楊靜, 等. 超級迭代PET/CT定量參數聯合癌胚抗原鑒別良、惡性孤立性肺結節. 中國醫學影像技術, 2022, 38(10): 1497-1502. |
| 71. | 李大鵬, 于波, 吳明英, 等. 磁共振3D-VIBE序列聯合生化指標水平檢測在肺結節診斷研究. 浙江創傷外科, 2022, 27(4): 804-806. |
- 1. 中華醫學會呼吸病學分會肺癌學組, 中國肺癌防治聯盟專家組. 肺結節診治中國專家共識(2018年版). 中華結核和呼吸雜志, 2018, 41(10): 763-771.
- 2. Liang X, Kong Y, Shang H, et al. Computed tomography findings, associated factors, and management of pulmonary nodules in 54, 326 healthy individuals. J Cancer Res Ther, 2022, 18(7): 2041-2048.
- 3. 譚雙平, 張彤, 祖江林, 等. 深度學習驅動的CT影像肺結節檢測: 挑戰、進展和展望. 中國醫療器械雜志, 2023, 47(2): 163-172.
- 4. Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood), 2018, 243(3): 213-221.
- 5. Shen C, Wu Q, Xia Q, et al. Establishment of a malignancy and benignancy prediction model of sub-centimeter pulmonary ground-glass nodules based on the inflammation-cancer transformation theory. Front Med (Lausanne), 2022, 9: 1007589.
- 6. Husari A, Hashem Y, Zaatari G, et al. Pomegranate juice prevents the formation of lung nodules secondary to chronic cigarette smoke exposure in an animal model. Oxid Med Cell Longev, 2017, 2017: 6063201.
- 7. Zhang Y, Liu Y, Wang J, et al. Atractylenolide II inhibits tumor-associated macrophages (TAMs)-induced lung cancer cell metastasis. Immunopharmacol Immunotoxicol, 2022, 44(2): 227-237.
- 8. Tian T, Lu J, Zhao W, et al. Associations of systemic inflammation markers with identification of pulmonary nodule and incident lung cancer in Chinese population. Cancer Med, 2022, 11(12): 2482-2491.
- 9. 姜文軍. 血清中IL-15、IL-6、TNF-β、IFN-γ、CRP、Beclin1與早期肺腺癌關系的研究. 安徽醫科大學, 2022.
- 10. Daly S, Rinewalt D, Fhied C, et al. Development and validation of a plasma biomarker panel for discerning clinical significance of indeterminate pulmonary nodules. J Thorac Oncol, 2013, 8(1): 31-36.
- 11. Liu CY, Xie WG, Wu S, et al. A comparative study on inflammatory factors and immune functions of lung cancer and pulmonary ground-glass attenuation. Eur Rev Med Pharmacol Sci, 2017, 21(18): 4098-4103.
- 12. 牛濤, 周逢海. 炎癥與腫瘤微環境. 中南大學學報(醫學版), 2023, 48(12): 1899-1913.
- 13. Yanagawa J, Tran LM, Salehi-Rad R, et al. Single-cell characterization of pulmonary nodules implicates suppression of immunosurveillance across early stages of lung adenocarcinoma. Cancer Res, 2023, 83(19): 3305-3319.
- 14. Hu X, Estecio MR, Chen RZ, et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun, 2021, 12(1): 687.
- 15. 李瑞琴, 金艷, 李偉, 等. 桂附地黃丸抗大鼠肺纖維化的作用及對外周血T淋巴細胞亞群的影響. 中華中醫藥學刊, 2016, 34(12): 2938-2940.
- 16. 朱德兵. 肺泡灌洗液中T淋巴細胞在早期周圍型肺癌的診斷價值研究. 昆明醫科大學, 2022.
- 17. Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med, 2019, 156: 33-46.
- 18. Frezzetti D, Gallo M, Maiello MR, et al. VEGF as a potential target in lung cancer. Expert Opin Ther Targets, 2017, 21(10): 959-966.
- 19. Seder CW, Kubasiak JC, Pithadia R, et al. Angiogenesis biomarkers may be useful in the management of patients with indeterminate pulmonary nodules. Ann Thorac Surg, 2015, 100(2): 429-436.
- 20. 呂春歌. 血管內皮生長因子C聯合CEA、CA199檢測對肺孤立性結節的臨床鑒別診斷價值. 河南外科學雜志, 2022, 28(6): 48-50.
- 21. Wang X, Leader JK, Wang R, et al. Vasculature surrounding a nodule: a novel lung cancer biomarker. Lung Cancer, 2017, 114: 38-43.
- 22. Ye S, Chen X, Yao Y, et al. Thioredoxin reductase as a novel and efficient plasma biomarker for the detection of non-small cell lung cancer: a large-scale, multicenter study. Sci Rep, 2019, 9(1): 2652.
- 23. 李莎, 惠開元, 孫文, 等. 硫氧還蛋白還原酶在肺癌臨床檢測中應用. 臨床軍醫雜志, 2020, 48(12): 1415-1417.
- 24. 居冠軍, 施民新, 樊懌輝, 等. 胸部CT聯合硫氧還蛋白還原酶檢測對孤立性肺結節良惡性的診斷價值. 交通醫學, 2023, 37(4): 397-399.
- 25. 卜亞偉. 硫氧還蛋白還原酶1(TrxR1)篩查早期非小細胞肺癌的臨床研究. 河北醫科大學, 2020.
- 26. 丁薇, 王保蘭, 李朋玲. 硫氧還蛋白還原酶聯合肺癌標志物對肺結節良惡性的診斷意義. 中華肺部疾病雜志(電子版), 2022, 15(5): 685-687.
- 27. 張國慶, 焦順昌. 新型腫瘤增殖指標―血清胸苷激酶1的臨床應用. 現代腫瘤醫學, 2012, 20(8): 1743-1745.
- 28. Chen ZH. Serological Thymidine kinase 1 is a biomarker for early detection of tumours—a health screening study on 35, 365 people, using a sensitive chemiluminescent dot blot assay. Sensors (Basel), 2011, 11(12): 11064-11080.
- 29. 周家田. 血清TK1、CEA、CYFRA21-1聯合胸部CT特征在肺結節診斷中的臨床價值. 成都醫學院, 2020.
- 30. 金蒙蒙, 葉元滋, 陳梅莉, 等. 肺癌患者血清胸苷激酶1的表達及其臨床意義. 實用醫學雜志, 2015, 31(3): 413-416.
- 31. Alegre MM, Weyant MJ, Bennett DT, et al. Serum detection of thymidine kinase 1 as a means of early detection of lung cancer. Anticancer Res, 2014, 34(5): 2145-2151.
- 32. 劉亞杰, 馬曉波. 腫瘤標志物GSTP1、CYFRA21-1及SCC-Ag對非小細胞肺癌的預后評估價值. 中國現代醫學雜志, 2020, 30(14): 42-46.
- 33. 馮小玲, 陳紅梅, 成軍霞, 等. 血清NSE、CYFRA21-1、SCC水平聯合CT灌注成像對肺結節良惡性病變的診斷價值. 標記免疫分析與臨床, 2020, 27(9): 1551-1555,1619.
- 34. 楊金生, 杜晚楠, 王景升. 多層螺旋CT聯合腫瘤標志物對孤立肺結節的診斷價值. 中國衛生工程學, 2023, 22(1): 101-102,106.
- 35. 萬輝, 高美玲, 林潔, 等. 不同類型的肺部磨玻璃結節患者術前免疫炎癥指標和癌胚抗原的比較. 溫州醫科大學學報, 2022, 52(7): 557-561.
- 36. Zhong S, Golpon H, Zardo P, et al. Mirnas in lung cancer. a systematic review identifies predictive and prognostic mirna candidates for precision medicine in lung cancer. Transl Res, 2021, 230: 164-196.
- 37. Sun ZQ, Shi K, Yang SX, et al. Effect of exosomal mirna on cancer biology and clinical applications. Mol Cancer, 2018, 17(1): 147.
- 38. Zhang JT, Qin H, Man Cheung FK, et al. Plasma extracellular vesicle microRNAs for pulmonary ground-glass nodules. J Extracell Vesicles, 2019, 8(1): 1663666.
- 39. 朱海龍. 低劑量螺旋CT聯合血漿miR-200b、miR-200c檢查鑒別診斷良惡性肺結節的價值. 中國療養醫學, 2022, 31(10): 1109-1112.
- 40. 程薪樾, 鮑文華, 王曉, 等. 血清miRNA-21檢測對肺結節研究的診斷價值. 齊齊哈爾醫學院學報, 2021, 42(7): 553-556.
- 41. Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell, 2016, 164(1-2): 57-68.
- 42. Chen N, Li G, Li H, et al. Plasma cfDNA as a potential treatment monitoring and prognostic index in patients withnon-small cell lung cancer. Cell Mol Biol (Noisy-le-grand). 2020, 66(5): 208-213.
- 43. Tao R, Cao W, Zhu F, et al. Liquid biopsies to distinguish malignant from benign pulmonary nodules. Thorac Cancer, 2021, 12(11): 1647-1655.
- 44. Szpechcinski A, Rudzinski P, Kupis W, et al. Plasma Cell-free DNA levels and integrity in patients with chest radiological findings nsclc versus benign lung nodules. Cancer Lett, 2016, 374(2): 202-207.
- 45. Gao H, Yang J, He L, et al. The diagnostic potential of SHOX2 and RASSF1A DNA methylation in early lung adenocarcinoma. Front Oncol, 2022, 12: 849024.
- 46. 楊敬平, 楊俊俊, 周嬋, 等. 肺泡灌洗液在肺癌早期診斷方面的研究進展. 中華肺部疾病雜志(電子版), 2020, 13(1): 97-99.
- 47. Zhang C, Yu W, Wang L, et al. DNA Methylation aAnalysis of the SHOX2 and RASSF1A panel in bronchoalveolar lavage fluid for lung cancer diagnosis. J Cancer, 2017, 8(17): 3585-3591.
- 48. 楊敬平. 肺泡灌洗液中SHOX2、RASSF1A甲基化及端粒酶活性檢測對肺結節良惡性鑒別診斷價值初探. 大連醫科大學, 2020.
- 49. 彭達明. 胸部低劑量CT在肺結節中的診斷效果. 現代醫學與健康研究電子雜志, 2023, 7(22): 94-96.
- 50. 於婧婧, 方金忠, 張文奇, 等. CT各征象對肺磨玻璃結節浸潤性及浸潤程度的鑒別價值. 全科醫學臨床與教育, 2023, 21(12): 1092-1095.
- 51. Schreuder A, Scholten ET, van Ginneken B, et al. Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice? Transl Lung Cancer Res, 2021, 10(5): 2378-2388.
- 52. 石逸秋, 沈雨雯, 劉可夫. 基于人工智能的CT肺結節評估的研究進展. 臨床放射學雜志, 2024, 43(3): 476-479.
- 53. 石逸秋, 沈雨雯, 陳劼, 等. CT定量參數預測肺磨玻璃結節病理類型的價值. 中國肺癌雜志, 2024, 27(2): 118-125.
- 54. 王志平, 郭偉, 真德智. 低劑量胸部CT在肺結節及早期肺癌篩查中的應用. 臨床放射學雜志, 2022, 41(7): 1298-1302.
- 55. 朱俊輝, 李思葉, 黃子康, 等. (18)F-FDG PET/CT原發灶攝取相對值及代謝參數對NSCLC縱隔淋巴結轉移的預測價值. 臨床放射學雜志, 2023, 42(10): 1584-1589.
- 56. 邱錢賽, 馮峰, 石健, 等. 18F-FDG PET/CT影像組學鑒別良、惡性高代謝孤立性肺結節. 中國醫學影像學雜志, 2022, 30(11): 1136-1142.
- 57. Saliho?lu YS, Uslu Erdemir R, Aydur Püren B, et al. Diagnostic performance of machine learning models based on 18F-FDG PET/CT radiomic features in the classification of solitary pulmonary nodules. Mol Imaging Radionucl Ther, 2022, 31(2): 82-88.
- 58. 江葉海, 蒲豆豆, 于楠. 基于磁共振成像的影像組學在肺癌中的研究進展. 磁共振成像, 2023, 14(7): 166-170.
- 59. Burris NS, Johnson KM, Larson PE, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology, 2016, 278(1): 239-246.
- 60. 江建芹, 崔磊, 胡春洪, 等. 胸部MR在肺癌篩查及肺結節隨診中的研究. 放射學實踐, 2022, 37(2): 274-280.
- 61. Liu H, Chen R, Tong C, Liang XW. MRI versus CT for the detection of pulmonary nodules: a meta-analysis. Medicine (Baltimore), 2021, 100(42): e27270.
- 62. 黃玉陽, 趙春玲, 張冰璐, 等. FUT7甲基化聯合CT影像特征預測肺腺癌發生風險的列線圖模型. 中國呼吸與危重監護雜志, 2024, 23(2): 95-104.
- 63. 何花, 胡文滕, 藺瑞江, 等. CT特征聯合腫瘤標志物預測肺磨玻璃結節腫瘤浸潤性的回顧性隊列研究. 中國胸心血管外科臨床雜志, 2022, 29(9): 1113-1119.
- 64. Zhang W, Duan X, Zhang Z, et al. Combination of CT and telomerase+ circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight, 2021, 6(11): e148182.
- 65. Zyla J, Marczyk M, Prazuch W, et al. Combining low-dose computer-tomography-based radiomics and serum metabolomics for diagnosis of malignant nodules in participants of lung cancer screening studies. Biomolecules, 2023, 14(1): 44.
- 66. Xu S, Ge J, Liu X, et al. The predictive value of chest computed tomography images, tumor markers, and metabolomics in the identification of benign and malignant pulmonary nodules. J Thorac Dis, 2023, 15(5): 2668-2679.
- 67. 吳少虹, 郭莉莉. 影像組學在肺癌中的應用. 放射學實踐, 2023, 38(6): 778-782.
- 68. Marmor HN, Jackson L, Gawel S, et al. Improving malignancy risk prediction of indeterminate pulmonary nodules with imaging features and biomarkers. Clin Chim Acta, 2022, 534: 106-114.
- 69. Patel N, Xu W, Deng Y, et al. Cross-scale integration of nano-sized extracellular vesicle-based biomarker and radiomics features for predicting suspected sub-solid pulmonary nodules. J Biomed Nanotechnol, 2021, 17(6): 1109-1122.
- 70. 趙佳佳, 邢媛媛, 楊靜, 等. 超級迭代PET/CT定量參數聯合癌胚抗原鑒別良、惡性孤立性肺結節. 中國醫學影像技術, 2022, 38(10): 1497-1502.
- 71. 李大鵬, 于波, 吳明英, 等. 磁共振3D-VIBE序列聯合生化指標水平檢測在肺結節診斷研究. 浙江創傷外科, 2022, 27(4): 804-806.
-
Previous Article
胸部CT表現為反暈征的鸚鵡熱衣原體肺炎兩例報告 -
Next Article
支氣管循環生理及其在不同肺疾病中的病理變化

