| 1. |
Richeldi L, Azuma A, Cottin V, et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med, 2022, 386(23): 2178-2187. DOI: 10.1056/NEJMoa 2201737.
|
| 2. |
Esposito DB, Lanes S, Donneyong M, et al. Idiopathic pulmonary fibrosis in United States automated claims. Incidence, prevalence, and algorithm validation. Am J Respir Crit Care Med, 2015, 192(10): 1200-1207.
|
| 3. |
Harari S, Madotto F, Caminati A, et al. Epidemiology of idiopathic pulmonary fibrosis in Northern Italy. PLoS One, 2016, 11(2): e0147072.
|
| 4. |
雷凱春, 岳紅梅, 周婷婷. 特發性肺纖維化治療新進展. 中國呼吸與危重監護雜志, 2019, 18(2): 199-203.
|
| 5. |
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: emerging diagnostic and therapeutic strategies. Mol Aspects Med, 2023, 94: 101227.
|
| 6. |
楊瑩, 徐凱峰, 魏麗娟. 吡非尼酮和尼達尼布在新型冠狀病毒感染后肺纖維化中的應用進展. 中國呼吸與危重監護雜志, 2024, 23(8): 593-598.
|
| 7. |
Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med, 2022, 205(9): e18-e47.
|
| 8. |
Drakopanagiotakis F, Wujak L, Wygrecka M, et al. Biomarkers in idiopathic pulmonary fibrosis. Matrix Biol, 2018, 68: 404-421.
|
| 9. |
Stainer A, Faverio P, Busnelli S, et al. Molecular biomarkers in idiopathic pulmonary fibrosis: state of the art and future directions. Int J Mol Sci, 2021, 22(12): 6255.
|
| 10. |
范宇斌, 何榮伶, 鄒麗君, 等. 生物標志物在特發性肺纖維化中的臨床價值. 南方醫科大學學報, 2020, 40(7): 1062-1065.
|
| 11. |
O’dwyer DN, Moore BB. The role of periostin in lung fibrosis and airway remodeling. Cell Mol Life Sci, 2017, 74: 4305-4314.
|
| 12. |
Ono J, Takai M, Kamei A, et al. Pathological roles and clinical usefulness of periostin in type 2 inflammation and pulmonary fibrosis. Biomolecules, 2021, 11(8): 1084.
|
| 13. |
呂長俊, 李洪波, 王曉芝, 等. 特發性肺纖維化與非特異性間質性肺炎的非創傷性鑒別診斷方程. 中華內科雜志, 2010, 49(5): 376-379.
|
| 14. |
Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082): 1941-1952.
|
| 15. |
Singh S, Natalini JG, Segal LN. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol, 2022, 15(5): 837-845.
|
| 16. |
吳亞娜, 劉東玲, 宋忠陽, 等. 特發性肺纖維化中上皮-間質轉化的研究現狀. 中國臨床藥理學雜志, 2023, 39(23): 3499-3503.
|
| 17. |
Salton F, Volpe MC, Confalonieri M. Epithelial–mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina, 2019, 55(4): 83.
|
| 18. |
鄧艷, 趙紅玉, 朱麗萍, 等. 硫酸羥氯喹通過PI3K/AKt/mTOR信號通路對百草枯致小鼠肺纖維化影響. 中國呼吸與危重監護雜志, 2024, 23(3): 192-199.
|
| 19. |
Gao Y, Du T, Yang L, et al. Research progress of KL-6 in respiratory system diseases. Crit Rev Clin Lab Sci, 2024: 1-17.
|
| 20. |
D’alessandro M, Bergantini L, Cameli P, et al. Krebs von den Lungen-6 as a biomarker for disease severity assessment in interstitial lung disease: a comprehensive review. Biomark Med, 2020, 14(8): 665-674.
|
| 21. |
Okamoto T, Fujii M, Furusawa H, et al. The usefulness of KL-6 and SP-D for the diagnosis and management of chronic hypersensitivity pneumonitis. Respir Med, 2015, 109(12): 1576-1581.
|
| 22. |
Xu L, Bian W, Gu X, et al. Differing expression of cytokines and tumor markers in combined pulmonary fibrosis and emphysema compared to emphysema and pulmonary fibrosis. COPD, 2017, 14(2): 245-250.
|
| 23. |
廖明星, 潘瑞琪, 艾承錦, 等. 肺纖維化血清 KL-6, TGF-β, CXCL13 水平與病變程度的關系及其聯合預測價值. 醫學研究生學報, 2021, 34(1): 62-67.
|
| 24. |
Sánchez-Díez S, Munoz X, Ojanguren I, et al. YKL-40 and KL-6 levels in serum and sputum of patients diagnosed with hypersensitivity pneumonitis. J Allergy Clin Immunol Pract, 2022, 10(9): 2414-2423.
|
| 25. |
Mulugeta S, Nureki SI, Beers MF. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol, 2015, 309(6): L507-L525.
|
| 26. |
Katzen J, Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest, 2020, 130(10): 5088-5099.
|
| 27. |
魯未, 趙卉, 魏紅. 血清KL-6、SP-A、SP-D及MMP-7對特發性肺纖維化的診斷意義及與肺功能的關系. 安徽醫科大學學報, 2016, 51(6): 868-872.
|
| 28. |
蘇文瑤, 陳鏗鏗, 黃永順, 等. 表面活性蛋白A、D在肺纖維化中的作用研究進展. 中國職業醫學, 2021, 48(4): 451-456.
|
| 29. |
Confalonieri P, Volpe MC, Jacob J, et al. Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells, 2022, 11(13): 2095.
|
| 30. |
Hamai K, Iwamoto H, Ishikawa N, et al. Comparative study of circulating MMP -7, CCL18, KL-6, SP-A, and SP-D as disease markers of idiopathic pulmonary fibrosis. Dis Markers, 2016, 2016: 4759040.
|
| 31. |
Guagliardo R, Perez-Gil J, De SS, et al. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release, 2018, 291: 116-126.
|
| 32. |
Dare A, King SD, Chen SY. Surfactant protein A promotes western diet-induced hepatic steatosis and fibrosis in mice. Sci Rep, 2024, 14(1): 7464.
|
| 33. |
李群, 關為群, 張楊安, 等. 骨膜蛋白和 p53 在口腔白斑及鱗狀細胞癌組織中的表達及意義. 國際口腔醫學雜志, 2019, 46(1): 5-11.
|
| 34. |
Yoshihara T, Nanri Y, Nunomura S, et al. Periostin plays a critical role in the cell cycle in lung fibroblasts. Respir Res, 2020, 21: 1-12.
|
| 35. |
劉勝菲, 李龍, 陳鳳, 等. 骨膜蛋白在特發性肺纖維化中的研究進展. 中國呼吸與危重監護雜志, 2023, 22(6): 448-451.
|
| 36. |
Carpagnano GE, Soccio P, Scioscia G, et al. The potential role of airways periostin in the clinical Practice of patients affected by idiopathic pulmonary fibrosis. Rejuvenation Res, 2021, 24(4): 302-306.
|