| 1. |
Nussbaumer M, Kieninger E, Tschanz SA, et al. Diagnosis of primary ciliary dyskinesia: discrepancy according to different algorithms. ERJ Open Res, 2021, 7(4): 00353-2021.
|
| 2. |
Hannah WB, Seifert BA, Truty R, et al. The global prevalence and ethnic heterogeneity of primary ciliary dyskinesia gene variants: a genetic database analysis. Lancet Respir Med, 2022, 10(5): 459-468.
|
| 3. |
Lucas JS, Davis SD, Omran H, et al. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med, 2020, 8(2): 202-216.
|
| 4. |
Ewen R, Pink I, Sutharsan S, et al. Primary ciliary dyskinesia in adult bronchiectasis: data from the German bronchiectasis registry PROGNOSIS. Chest, 2024, 166(5): 938-950.
|
| 5. |
Gao YH, Guan WJ, Liu SX, et al. Aetiology of bronchiectasis in adults: a systematic literature review. Respirology, 2016, 21(8): 1376-83.
|
| 6. |
田欣倫, 吳翔, 徐凱峰, 等. 成人支氣管擴張患者的病因及臨床特點分析. 中國呼吸與危重監護雜志, 2013, 12(6): 576-80.
|
| 7. |
Chalmers JD, Chang AB, Chotirmall SH, et al. Bronchiectasis. Nat Rev Dis Primers, 2018, 4(1): 45.
|
| 8. |
Wallmeier J, Nielsen KG, Kuehni CE, et al. Motile ciliopathies. Nat Rev Dis Primers, 2020, 6(1): 77.
|
| 9. |
Dodd DO, Mechaussier S, Yeyati PL, et al. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science, 2024, 384(6694): eadf5489.
|
| 10. |
Lucas JS, Barbato A, Collins SA, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J, 2017, 49(1): 1601090.
|
| 11. |
Shapiro AJ, Davis SD, Polineni D, et al. Diagnosis of primary ciliary dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med, 2018, 197(12): e24-e39.
|
| 12. |
Behan L, Dimitrov BD, Kuehni CE, et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J, 2016, 47(4): 1103-1112.
|
| 13. |
Leigh MW, Ferkol TW, Davis SD, et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann Am Thorac Soc, 2016, 13(8): 1305-1313.
|
| 14. |
Rademacher J, Buck A, Schwerk N, et al. Nasal nitric oxide measurement and a modified PICADAR score for the screening of primary ciliary dyskinesia in adults with bronchiectasis. Pneumologie, 2017, 71(8): 543-548.
|
| 15. |
Rademacher J, Dettmer S, Fuge J, et al. The primary ciliary dyskinesia computed tomography score in adults with bronchiectasis: a derivation und validation study. Respiration, 2021, 100(6): 499-509.
|
| 16. |
Martin? V, Bo?ek-Dohalská L, Varényiová ?, et al. Evaluation of a clinical index as a predictive tool for primary ciliary dyskinesia. Diagnostics (Basel), 2021, 11(6): 1088.
|
| 17. |
Palmas K, Shanthikumar S, Robinson P. Assessment of primary ciliary dyskinesia predictive tools. Eur Respir J, 2020, 56(6): 2001169.
|
| 18. |
中國罕見病聯盟呼吸病學分會, 原發性纖毛運功障礙診斷與治療中國共識專家組. 原發性纖毛運動障礙診斷與治療中國專家共識. 上海醫學, 2020, 43(4): 193-202.
|
| 19. |
Horani A, Ferkol TW. Advances in the genetics of primary ciliary dyskinesia: clinical implications. Chest, 2018, 154(3): 645-652.
|
| 20. |
Shoemark A, Boon M, Brochhausen C, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J, 2020, 55(4): 1900725.
|
| 21. |
孫曉燕, 陳亞紅, 孫永昌. 原發性纖毛運動障礙診斷的方法和流程. 中華結核和呼吸雜志, 2020, 43(9): 811-815.
|
| 22. |
Wohlgemuth K, Hoersting N, Koenig J, et al. Pathogenic variants in CFAP46, CFAP54, CFAP74 and CFAP221 cause primary ciliary dyskinesia with a defective C1d projection of the central apparatus. Eur Respir J, 2024, 64(6): 2400790.
|
| 23. |
Lee SL, O'Callaghan C, Lau YL, et al. Functional analysis and evaluation of respiratory cilia in healthy Chinese children. Respir Res, 2020, 21(1): 259.
|
| 24. |
Zhang RL, Pan CX, Tang CL, et al. Motile ciliary disorders of the nasal epithelium in adults with bronchiectasis. Chest, 2023, 163(5): 1038-1050.
|
| 25. |
Shoemark A, Rubbo B, Legendre M, et al. Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia. Eur Respir J, 2021, 58(2): 2002359.
|
| 26. |
Raidt J, Riepenhausen S, Pennekamp P, et al. Analyses of 1236 genotyped primary ciliary dyskinesia individuals identify regional clusters of distinct DNA variants and significant genotype-phenotype correlations. Eur Respir J, 2024, 64(2): 2301769.
|
| 27. |
Peng B, Gao YH, Xie JQ, et al. Clinical and genetic spectrum of primary ciliary dyskinesia in Chinese patients: a systematic review. Orphanet J Rare Dis, 2022, 17(1): 283.
|
| 28. |
李奕璇, 何苗, 鄭海霞, et al. 原發性纖毛運動障礙患者外顯子組測序陰性后的遺傳診斷思路. 罕見病研究, 2024, 3(3): 368-374.
|
| 29. |
Rumman N, Jackson C, Collins S, et al. Diagnosis of primary ciliary dyskinesia: potential options for resource-limited countries. Eur Respir Rev, 2017, 26(143): 160058.
|
| 30. |
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol, 2020, 319(4): L603-L619.
|
| 31. |
Walker WT, Jackson CL, Lackie PM, et al. Nitric oxide in primary ciliary dyskinesia. Eur Respir J, 2012, 40(4): 1024-1032.
|
| 32. |
Raidt J, Krenz H, Tebbe J, et al. Limitations of nasal nitric oxide measurement for diagnosis of primary ciliary dyskinesia with normal ultrastructure. Ann Am Thorac Soc, 2022, 19(8): 1275-1284.
|
| 33. |
Zhang X, Wang X, Li H, et al. The value of nasal nitric oxide measurement in the diagnosis of primary ciliary dyskinesia. Pediatr Investig, 2019, 3(4): 209-213.
|
| 34. |
Shapiro AJ, Davis SD, Leigh MW, et al. Limitations of nasal nitric oxide testing in primary ciliary dyskinesia. Am J Respir Crit Care Med, 2020, 202(3): 476-477.
|
| 35. |
O'Connor MG, Horani A, Shapiro AJ. Progress in diagnosing primary ciliary dyskinesia: the North American perspective. Diagnostics (Basel), 2021, 11(7): 1278.
|
| 36. |
Jackson CL, Bottier M. Methods for the assessment of human airway ciliary function. Eur Respir J, 2022, 60(1): 2102300.
|
| 37. |
Kempeneers C, Seaton C, Garcia Espinosa B, et al. Ciliary functional analysis: Beating a path towards standardization. Pediatr Pulmonol, 2019, 54(10): 1627-1638.
|
| 38. |
Raidt J, Wallmeier J, Hjeij R, et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J, 2014, 44(6): 1579-1588.
|
| 39. |
Rubbo B, Shoemark A, Jackson CL, et al. Accuracy of high-speed video analysis to diagnose primary ciliary dyskinesia. Chest, 2019, 155(5): 1008-1017.
|
| 40. |
Shapiro AJ, Ferkol TW, Manion M, et al. High-speed videomicroscopy analysis presents limitations in diagnosis of primary ciliary dyskinesia. Am J Respir Crit Care Med, 2020, 201(1): 122-123.
|
| 41. |
Benchimol L, Bricmont N, Bonhiver R, et al. Impact of local anesthesia on ciliary dyskinesia diagnosis by digital high-speed videomicroscopy. Pediatr Pulmonol, 2024, 60(1): e27323.
|
| 42. |
Nikolaizik W, Hahn J, Bauck M, et al. Comparison of ciliary beat frequencies at different temperatures in young adults. ERJ Open Res, 2020, 6(4): 00477-2020.
|
| 43. |
Kempeneers C, Seaton C, Chilvers MA. Variation of ciliary beat pattern in three different beating planes in healthy subjects. Chest, 2017, 151(5): 993-1001.
|
| 44. |
Sampaio P, da Silva MF, Vale I, et al. CiliarMove: new software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia. ERJ Open Res, 2021, 7(1): 00792-2020.
|
| 45. |
Schneiter M, Tschanz SA, Escher A, et al. The cilialyzer - a freely available open-source software for the analysis of mucociliary activity in respiratory cells. Comput Methods Programs Biomed, 2023, 241: 107744.
|
| 46. |
Demetriou ZJ, Mu?iz-Hernández J, Rosario-Ortiz G, et al. Evaluation of open-source ciliary analysis software in primary ciliary dyskinesia: a comparative assessment. Diagnostics (Basel), 2024, 14(16): 1814.
|
| 47. |
Shoemark A, Frost E, Dixon M, et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. Am J Respir Crit Care Med, 2017, 196(1): 94-101.
|
| 48. |
Dougherty GW, Loges NT, Klinkenbusch JA, et al. DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am J Respir Cell Mol Biol, 2016, 55(2): 213-324.
|
| 49. |
Cindri? S, Dougherty GW, Olbrich H, et al. SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am J Respir Cell Mol Biol, 2020, 62(3): 382-396.
|
| 50. |
Baz-Redón N, Rovira-Amigo S, Fernández-Cancio M, et al. Immunofluorescence analysis as a diagnostic tool in a spanish cohort of patients with suspected primary ciliary dyskinesia. J Clin Med, 2020, 9(11): 3603.
|
| 51. |
Liu Z, Nguyen QPH, Guan Q, et al. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies. Sci Transl Med, 2020, 12(535): eaay0071.
|
| 52. |
Hayes D Jr, Reynolds SD, Tumin D. Outcomes of lung transplantation for primary ciliary dyskinesia and Kartagener syndrome. J Heart Lung Transplant, 2016, 35(11): 1377-1378.
|
| 53. |
Shah A, Shoemark A, MacNeill SJ, et al. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur Respir J, 2016, 48(2): 441-450.
|
| 54. |
Gatt D, Shaw M, Kritzinger F, et al. The impact of age of diagnosis in children with primary ciliary dyskinesia. Ann Am Thorac Soc, 2024, 22(2): 208-215.
|
| 55. |
Zhou W, Chen Q, Wang Y, et al. An electronic medical record retrieval system can be used to identify missed diagnosis in patients with primary ciliary dyskinesia. J Intern Med, 2025, 297(1): 93-100.
|
| 56. |
Shoemark A, Dell S, Shapiro A, et al. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis. Eur Respir J, 2019, 54(3): 1901066.
|