| 1. |
Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol, 2016, 11(1): 39-51.
|
| 2. |
Detterbeck FC, Woodard GA, Bader AS, et al. The Proposed Ninth Edition TNM Classification of Lung Cancer. Chest, 2024, 166(4): 882-895.
|
| 3. |
Catania F, Chapron T, Crincoli E, et al. Deep Learning for prediction of late recurrence of retinal detachment using preoperative and postoperative ultra-wide field imaging. Acta Ophthalmol, 2024, 102(7): e984-e993.
|
| 4. |
Reeve R, Borley DW, Maree FF, et al. Tracking the Antigenic Evolution of Foot-and-Mouth Disease Virus. PLoS One, 2016, 11(7): e0159360.
|
| 5. |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014, 5: 4006.
|
| 6. |
Delasos L, Madabhushi A, Patil PD. Can Radiomics Bridge the Gap Between Immunotherapy and Precision Medicine in Lung Cancer? J Thorac Oncol, 2023, 18(6): 686-688.
|
| 7. |
Machlowska J, Baj J, Sitarz M, et al. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int J Mol Sci, 2020, 21(11): 4012.
|
| 8. |
Antony V, Sun T, Dolezal D, et al. Comprehensive Molecular Profiling of Metastatic Pancreatic Adenocarcinomas. Cancers (Basel), 2025, 17(3): 335.
|
| 9. |
Galperin MY, Kristensen DM, Makarova KS, et al. Microbial genome analysis: the COG approach. Brief Bioinform, 2019, 20(4): 1063-1070.
|
| 10. |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196(10): 879-887.
|
| 11. |
She Y, He B, Wang F, et al. Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study. EBioMedicine, 2022, 86: 104364.
|
| 12. |
Zhao Y, Xiong S, Ren Q, et al. Deep learning using histological images for gene mutation prediction in lung cancer: a multicentre retrospective study. Lancet Oncol, 2025, 26(1): 136-146.
|
| 13. |
Jiang B, Li N, Shi X, et al. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology, 2022, 303(1): 202-212.
|
| 14. |
Rakaee M, Tafavvoghi M, Ricciuti B, et al. Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer. JAMA Oncol, 2025, 11(2): 109-118.
|
| 15. |
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res, 2017, 77(21): e104-e107.
|
| 16. |
Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020, 295(2): 328-338.
|
| 17. |
Liao WW, Asri M, Ebler J, et al. A draft human pangenome reference. Nature, 2023, 617(7960): 312-324.
|
| 18. |
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38(16): e164.
|
| 19. |
DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 2011, 43(5): 491-8.
|
| 20. |
Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res, 2019, 47(D1): D941-D947.
|
| 21. |
Jusakul A, Cutcutache I, Yong CH, et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov, 2017, 7(10): 1116-1135.
|
| 22. |
Kontschieder P, Bulò SR, Pelillo M, et al. Structured Labels in Random Forests for Semantic Labelling and Object Detection. IEEE Trans Pattern Anal Mach Intell, 2014, 36(10): 2104-16.
|
| 23. |
O'Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res, 2015, 21(2): 249-57.
|
| 24. |
Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol, 2009, 70(2): 232-41.
|
| 25. |
Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep, 2015, 5: 11044.
|
| 26. |
Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N Engl J Med, 2017, 376(22): 2109-2121.
|
| 27. |
Leijenaar RT, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, 2015, 5: 11075.
|
| 28. |
Zhang J, Mucs D, Norinder U, et al. LightGBM: An Effective and Scalable Algorithm for Prediction of Chemical Toxicity-Application to the Tox21 and Mutagenicity Data Sets. J Chem Inf Model, 2019, 59(10): 4150-4158.
|
| 29. |
?orgi? D, Stefanovi? A, Keckarevi? D, et al. XGBoost as a reliable machine learning tool for predicting ancestry using autosomal STR profiles - Proof of method. Forensic Sci Int Genet, 2025, 76: 103183.
|
| 30. |
Bai Y, Li Y, Shen Y, et al. AutoDC: an automatic machine learning framework for disease classification. Bioinformatics, 2022, 38(13): 3415-3421.
|
| 31. |
Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 2006, 7: 91.
|
| 32. |
Schnell PM. Controlling the false-discovery rate when identifying the subgroup benefiting from treatment. Clin Trials, 2023, 20(4): 394-404.
|
| 33. |
Zhang D, Qian Y, Akula N, et al. Accuracy of CNV Detection from GWAS Data. PLoS One, 2011, 6(1): e14511.
|
| 34. |
Zhou D, Jiang Y, Zhong X, et al. A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis. Nat Genet, 2020, 52(11): 1239-1246.
|
| 35. |
de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N Engl J Med, 2020, 382(6): 503-513.
|
| 36. |
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
| 37. |
Prentice RL, Zhao S. Regression Models and Multivariate Life Tables. J Am Stat Assoc, 2021, 116(535): 1330-1345.
|
| 38. |
Li Y, Wu X, Yang P, et al. Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics Proteomics Bioinformatics, 2022, 20(5): 850-866.
|
| 39. |
Kirkpatrick A, Onyeze C, Kartchner D, et al. Optimizations for Computing Relatedness in Biomedical Heterogeneous Information Networks: SemNet 2. 0. Big Data Cogn Comput, 2022, 6(1): 27.
|
| 40. |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016, 278(2): 563-577.
|
| 41. |
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511(7511): 543-550.
|
| 42. |
Bodalal Z, Trebeschi S, Nguyen-Kim TDL, et al. Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY), 2019, 44(6): 1960-1984.
|
| 43. |
Grossmann P, Stringfield O, El-Hachem N, et al. Defining the biological basis of radiomic phenotypes in lung cancer. Elife, 2017, 6: e23421.
|
| 44. |
Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol, 2008, 26(21): 3552-3559.
|
| 45. |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci U S A, 2018, 115(13): E2970-E2979.
|
| 46. |
Sullivan R, Peppercorn J, Sikora K, et al. Delivering affordable cancer care in high-income countries. Lancet Oncol, 2011, 12(10): 933-80.
|
| 47. |
Janke AT, Neumar RW. Academic emergency medicine: Common practice or underdeveloped? Acad Emerg Med, 2024, 31(8): 835-836.
|
| 48. |
Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet, 2019, 20(2): 71-88.
|
| 49. |
Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature, 2017, 545(7655): 446-451.
|
| 50. |
St?hl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 2016, 353(6294): 78-82.
|
| 51. |
MacParland SA, Liu JC, Ma XZ, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun, 2018, 9(1): 4383.
|