【摘要】 隨著對術后膠質瘤復發的不斷研究,逐漸發現膠質瘤術后補充放療和/或化療等綜合治療的患者行MRI檢查后出現類似腫瘤復發的強化影像,經病檢證實為一種治療相關反應,稱之為“假性進展(pseu-doprogression,psPD)”。膠質瘤術后患者psPD與腫瘤復發有不同的病理生理機制及治療方案,隨著對psPD及膠質瘤復發認識的日臻完善,使得臨床醫生在判斷復發膠質瘤及制定其治療策略的過程中更為準確、有效。
引用本文: 牛胤,毛慶. 膠質瘤術后假性進展的臨床特點及治療. 華西醫學, 2010, 25(10): 1924-1926. doi: 復制
1. | Stupp RR, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352 (10): 987-996. |
2. | Macdonald DR, Cascino TL, Schold SC Jr, et al. Response criteria for phase II studies of supratentorial malignant glioma[J]. J Clin Oncol, 1990, 8(7): 1277-1280. |
3. | Kleinschmidt-DeMasters BK, Geier JM. Pathology of high-dose intraarterial BCNU[J]. Surg Neurol, 1989, 31(6): 435-443. |
4. | Fiegler W, Langer M, Scheer M, et al. Reversible computed tomographic changes following brain tumor irradiation induced by the "early-delayed reaction" after radiation[J]. Radiologe, 1986, 26(4): 206-209. |
5. | Watne K, Hager B, Heier M, et al. Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations[J]. Acta Oncol, 1990, 29(7): 891-895. |
6. | Griebel M, Friedman HS, Halperin EC, et al. Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma[J]. Med Pediatr Oncol, 1991, 19(3): 182-186. |
7. | Chamberlain M, Glantz M, Chalmers L, et al. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma[J]. J Neurooncol 2007, 82(1): 81-83. |
8. | Taal W, Brandsma D, de Bruin HG, et al. Incidence of early pseudoprogression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide[J]. Cancer, 2008, 113(2): 405-410. |
9. | Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients[J]. J Clin Oncol, 2008, 26(13): 2192-2197. |
10. | Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352(10): 997-1003. |
11. | Prados MD, Chang SM, Butowski N, et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma[J]. J Clin Oncol, 2009, 27(4): 579-584. |
12. | Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation[J]. Semin Radiat Oncol, 2007, 17(2): 81-88. |
13. | Nordal RA, Nagy A, Pintilie M, et al. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor[J]. Clin Cancer Res, 2004, 10: 3342-3353. |
14. | Gupta VK, Jaskowiak NT, Beckett MA, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance[J]. Cancer J, 2002, 8 (1): 47-54. |
15. | Brandes AA, Rigon A, Zampieri P, et al. Carboplatin and teniposide concurrent with radiotherapy in patients with glioblastoma multiforme: a phase II study.[J]. Cancer 1998, 82(2): 355-361. |
16. | Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis[J]. AJNR Am J Neuroradiol, 2005, 26: 1967-1972. |
17. | Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment[J]. Radiology, 2000, 217: 377-384. |
18. | Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue[J]. AJNR Am J Neuroradiol, 2000, 21(5): 901-909. |
19. | Teksam M, Kayahan EM, Yerli H, et al. Brain MR perfusion and MR spectroscopy in differentiation of radiation necrosis from tumor recurrence (case report)[J]. Tani Girisim Radyol, 2004, 10(4): 263-267. |
20. | Shimizu H, Kumabe T, Tominaga T, et al. Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy[J]. AJNR Am J Neuroradiol, 1996, 17(4): 737-747. |
21. | Vigneron D, Bollen A, McDermott M, et al. Three dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors[J]. Magn Reson Imaging, 2001, 19(1): 89-101. |
22. | Rock JP, Scarpace L, Hearshen D, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis[J]. Neurosurgery, 2004, 54(5): 1111-1117. |
23. | Chen W. Clinical applications of PET in brain tumors[J]. J Nucl Med, 2007, 48 (9): 1468-1481. |
24. | Ricci P, Karis J, Heiserman J, et al. Differentiating recurrent tumor from radiation necrosis: time for reevaluation of positron emission tomography[J] ? AJNR Am J Neuroradiol, 1998, 19(3): 407-413. |
25. | Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy[J]. J Nucl Med, 2008, 49(5): 694-699. |
26. | Vredenburgh JJ, Desjardins A, Herndon JE II, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma[J]. Clin Cancer Res, 2007, 13: 1253-1259. |
27. | Cloughesy TF, Prados MD, Wen PY, et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM)[J]. J Clin Oncol, 2008, 26 (Suppl). |
28. | Gonzalez J, Kumar AJ, Conrad CA, et al. Effect of bevacizumab on radiation necrosis of the brain[J]. Int J Radiat Oncol Biol Phys, 2007, 67(2): 323-326. |
- 1. Stupp RR, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352 (10): 987-996.
- 2. Macdonald DR, Cascino TL, Schold SC Jr, et al. Response criteria for phase II studies of supratentorial malignant glioma[J]. J Clin Oncol, 1990, 8(7): 1277-1280.
- 3. Kleinschmidt-DeMasters BK, Geier JM. Pathology of high-dose intraarterial BCNU[J]. Surg Neurol, 1989, 31(6): 435-443.
- 4. Fiegler W, Langer M, Scheer M, et al. Reversible computed tomographic changes following brain tumor irradiation induced by the "early-delayed reaction" after radiation[J]. Radiologe, 1986, 26(4): 206-209.
- 5. Watne K, Hager B, Heier M, et al. Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations[J]. Acta Oncol, 1990, 29(7): 891-895.
- 6. Griebel M, Friedman HS, Halperin EC, et al. Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma[J]. Med Pediatr Oncol, 1991, 19(3): 182-186.
- 7. Chamberlain M, Glantz M, Chalmers L, et al. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma[J]. J Neurooncol 2007, 82(1): 81-83.
- 8. Taal W, Brandsma D, de Bruin HG, et al. Incidence of early pseudoprogression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide[J]. Cancer, 2008, 113(2): 405-410.
- 9. Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients[J]. J Clin Oncol, 2008, 26(13): 2192-2197.
- 10. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352(10): 997-1003.
- 11. Prados MD, Chang SM, Butowski N, et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma[J]. J Clin Oncol, 2009, 27(4): 579-584.
- 12. Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation[J]. Semin Radiat Oncol, 2007, 17(2): 81-88.
- 13. Nordal RA, Nagy A, Pintilie M, et al. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor[J]. Clin Cancer Res, 2004, 10: 3342-3353.
- 14. Gupta VK, Jaskowiak NT, Beckett MA, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance[J]. Cancer J, 2002, 8 (1): 47-54.
- 15. Brandes AA, Rigon A, Zampieri P, et al. Carboplatin and teniposide concurrent with radiotherapy in patients with glioblastoma multiforme: a phase II study.[J]. Cancer 1998, 82(2): 355-361.
- 16. Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis[J]. AJNR Am J Neuroradiol, 2005, 26: 1967-1972.
- 17. Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment[J]. Radiology, 2000, 217: 377-384.
- 18. Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue[J]. AJNR Am J Neuroradiol, 2000, 21(5): 901-909.
- 19. Teksam M, Kayahan EM, Yerli H, et al. Brain MR perfusion and MR spectroscopy in differentiation of radiation necrosis from tumor recurrence (case report)[J]. Tani Girisim Radyol, 2004, 10(4): 263-267.
- 20. Shimizu H, Kumabe T, Tominaga T, et al. Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy[J]. AJNR Am J Neuroradiol, 1996, 17(4): 737-747.
- 21. Vigneron D, Bollen A, McDermott M, et al. Three dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors[J]. Magn Reson Imaging, 2001, 19(1): 89-101.
- 22. Rock JP, Scarpace L, Hearshen D, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis[J]. Neurosurgery, 2004, 54(5): 1111-1117.
- 23. Chen W. Clinical applications of PET in brain tumors[J]. J Nucl Med, 2007, 48 (9): 1468-1481.
- 24. Ricci P, Karis J, Heiserman J, et al. Differentiating recurrent tumor from radiation necrosis: time for reevaluation of positron emission tomography[J] ? AJNR Am J Neuroradiol, 1998, 19(3): 407-413.
- 25. Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy[J]. J Nucl Med, 2008, 49(5): 694-699.
- 26. Vredenburgh JJ, Desjardins A, Herndon JE II, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma[J]. Clin Cancer Res, 2007, 13: 1253-1259.
- 27. Cloughesy TF, Prados MD, Wen PY, et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM)[J]. J Clin Oncol, 2008, 26 (Suppl).
- 28. Gonzalez J, Kumar AJ, Conrad CA, et al. Effect of bevacizumab on radiation necrosis of the brain[J]. Int J Radiat Oncol Biol Phys, 2007, 67(2): 323-326.