Objective To observe the effect of transcranial ultrasound stimulation (TUS) on the recovery of upper limb motor function in stroke patients and explore its mechanism. Methods The inpatients with ischemic stroke and hemiplegia admitted to the Department of Rehabilitation Medicine of the Second Affiliated Hospital of Xi’an Jiaotong University between November 2019 and December 2021were prospectively included. The patients were randomly divided into a true stimulation group and a false stimulation group. All patients received routine medication treatment and rehabilitation training, with a course of 2 weeks. The patients in the true stimulation group also received TUS, and the stimulation site and mode in the false stimulation group were the same as those in the true stimulation group, but the transducer was in a non working mode. The changes in upper limb function and motor cortex electrical activity before and after treatment were compared between two groups of patients. The Wolf Motor Function Test (WMFT), Jebsen Hand Function Test (JHFT), and Fugl-Meyer Assessment-Upper Extremities (FMA-UE) were used as indicators of upper limb motor function. The motor evoked potential (MEP) latency, resting motor threshold (RMT), cortical silent period (CSP), and central motor conduction time (CMCT) were used as indicators of cortical excitability. Results A total of 30 patients were included, with 15 in the true stimulation group and 15 in the false stimulation group. There was no statistically significant difference in age, gender, course of disease, lesion side, handedness, National Institute of Health Stroke Scale score, and Barthel Index between the two groups of patients (P>0.05). Before treatment, there was no statistically significant difference in WMFT score, JHFT time, and FMA-UE score between the two groups of patients (P>0.05). After treatment, the WMFT score and FMA-UE score of both groups of patients increased compared to before treatment within the group, while the JHFT time decreased compared to before treatment within the group (P<0.05). The improvement degree of WMFT score (19.2±8.0 vs. 11.8±5.5), JHFT time [(39.3±20.4) vs. (26.0±15.9) s], and FMA-UE score [14.0 (12.0, 16.0) vs. 8.0 (7.0, 9.0)] before and after treatment in the true stimulation group were better than those in the false stimulation group (P<0.05). Before treatment, there was no statistically significant difference in MEP latency, CSP, CMCT, and RMT between the two groups of patients (P>0.05). After treatment, the MEP latency, CSP, CMCT, and RMT of both groups of patients decreased compared to before treatment within the group (P<0.05). The degree of decrease in CSP [(33.5±12.3) vs. (18.5±5.5) ms], CMCT [3.5 (2.5, 5.8) vs. 1.8 (1.5, 3.4) ms], and RMT [(19.2±12.8)% vs. (8.8±8.7)%] in the true stimulation group before and after treatment were greater than those in the false stimulation group (P<0.05). There was no statistically significant difference in the degree of decrease in MEP latency between the two groups before and after treatment (P>0.05). Both groups of patients had no adverse reactions during the treatment period. Conclusion TUS applied to the primary motor cortex can help restore upper limb motor function in stroke patients, and the mechanism of action may be related to TUS enhancing cortical excitability in the affected brain.
Exoskeleton nursing robot is a typical human-machine co-drive system. To full play the subjective control and action orientation of human, it is necessary to comprehensively analyze exoskeleton wearer’s surface electromyography (EMG) in the process of moving patients, especially identifying the spatial distribution and internal relationship of the EMG information. Aiming at the location of electrodes and internal relation between EMG channels, the complex muscle system at the upper limb was abstracted as a muscle functional network. Firstly, the correlation characteristics were analyzed among EMG channels of the upper limb using the mutual information method, so that the muscle function network was established. Secondly, by calculating the characteristic index of network node, the features of muscle function network were analyzed for different movements. Finally, the node contraction method was applied to determine the key muscle group that reflected the intention of wearer’s movement, and the characteristics of muscle function network were analyzed in each stage of moving patients. Experimental results showed that the location of the myoelectric collection could be determined quickly and efficiently, and also various stages of the moving process could effectively be distinguished using the muscle functional network with the key muscle groups. This study provides new ideas and methods to decode the relationship between neural controls of upper limb and physical motion.
In the process of robot-assisted training for upper limb rehabilitation, a passive training strategy is usually used for stroke patients with flaccid paralysis. In order to stimulate the patient’s active rehabilitation willingness, the rehabilitation therapist will use the robot-assisted training strategy for patients who gradually have the ability to generate active force. This study proposed a motor function assessment technology for human upper-limb based on fuzzy recognition on interaction force and human-robot interaction control strategy based on assistance-as-needed. A passive training mode based on the calculated torque controller and an assisted training mode combined with the potential energy field were designed, and then the interactive force information collected by the three-dimensional force sensor during the training process was imported into the fuzzy inference system, the degree of active participation σ was proposed, and the corresponding assisted strategy algorithms were designed to realize the adaptive adjustment of the two modes. The significant correlation between the degree of active participation σ and the surface electromyography signals (sEMG) was found through the experiments, and the method had a shorter response time compared to a control strategy that only adjusted the mode through the magnitude of interaction force, making the robot safer during the training process.
Objective To evaluate the effects of different ways of exercise training on elderly patients with chronic obstructive pulmonary disease ( COPD) , which focuse on the changes of cardiopulmonary exercise function and COPD symptoms. Methods 54 cases of elderly patients with stable COPD were randomly allocated to a control ( 15 cases) , a lower-limb ( 20 cases) , or a upper-Limb and lower-Limb combined exercise group ( 19 cases) . All patients received conventional medical therapy.Meanwhile, the exercise groups received training for 16 weeks. The improvements of resting spirometry,cardiopulmonary exercise test ( CPET) , and dyspnea ( Borg scale rating) were evaluated before and after the training scheme. Results There was no significant difference in resting spirometry after exercise training( P gt;0. 05) . Exercise tolerance and Borg scale were improved in both exercise groups significantly than baseline ( P gt;0. 05) and the control group ( P gt;0. 05) . VE@ 50% Vo2max was improved significantly in the combined group( 4. 81 ±0. 70 vs. 2. 49 ±1. 15, P lt; 0. 001) . Breathing reserve ( BR) was elevated in bothexercise groups than the control ( P lt; 0. 01) , and the improvement in the combined group was more significant ( 9. 79 ±1. 57 vs. - 1. 36 ±2. 82, P lt; 0. 001) . Gas exchange response ( VD /VT ) was slightly improved after rehabilitation in the combined group( P lt;0. 05) . Borg scale after rehabilitation was correlatedwith FEV1% pred, BR, and Vo2 /kg after rehabilitation[ Borg = 9. 516 - 0. 174 ×FEV1% pred - 0. 156 × (Vo2 /kg) - 0. 023 ×BR] . Conclusions Upper-limb combined with lower-limb exercise training can markedly improve the level of aerobic capacity and ventilation in elderly patients with stable COPD, and then improve the exercise tolerance.
Objective To explore the effect of " closed-loop rehabilitation”-based digital mirror therapy (MT) on the recovery of upper limb function after stroke. Methods Between December 2017 and April 2018, 90 stroke patients were recruited and randomly assigned to digital MT group (MG) or conventional group (CG), with 45 in each group. Patients in MG received digital MT for 60 minutes and subsequent hand function rehabilitation for 30 minutes, which was a " closed-loop rehabilitation”; moreover, patients in CG received therapeutic exercises, occupational therapy, and hand function rehabilitation for 30 minutes separately (totally 90 minutes). Both interventions were daily provided, 5 days per week and lasting for 4 weeks. Clinical assessments were provided before and after the interventions, including the Fugl-Meyer Assessment Upper Limb (FAM_UL) for motor function evaluation, the Modified Barthel Index (MBI) for the activities of daily life (ADL) evaluation, and the Modified Ashworth Scale (MAS) for the spasticity of wrist extensor/flexor. Results Five patients did not complete the study (3 in MG and 2 in CG), so there were totally 85 subjects analysed in the end. After 4-week interventions, significant improvements of FMA_UL scores (Pre: MG, 25.86±17.41; CG, 21.71±15.60. Post: MG, 33.43±17.08; CG, 26.48±16.47) and MBI scores (Pre: MG, 66.62±21.73; CG, 59.14±21.58. Post: MG, 84.62±15.06; CG, 71.10±19.95) were found in both groups; moreover, higher scores of FMA_UL and MBI were investigated in MG comparing with CG after interventions. However, there were no significantly differences in MAS. Conclusions The " closed-loop rehabilitation”-based digital MT can improve the motor function of upper limb and the ability of ADL in patients with stroke. Moreover, it is more effective than conventional treatments.
ObjectiveTo systematically review the efficacy of three transcranial direct current stimulation protocols (anodal stimulation, cathodal stimulation, and bipolar stimulation) on upper extremity function interventions in stroke patients. MethodsPubMed, EMbase, The Cochrane Library, Web of Science, CNKI, CBM, WanFang Data and VIP databases were electronically searched to collect randomized controlled trials (RCTs) on the efficacy of three transcranial direct current stimulation protocols on upper extremity function interventions in stroke patients from inception to April 2022. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies; then, the network meta-analysis was performed by using R software and ADDIS software. ResultsA total of 64 RCTs involving 3 968 patients were included. The results of network meta-analysis showed that, the probability order of the three stimulation methods on FMA-U, MBI, NIHSS score was: anode>bipolar>cathode>control. In addition, the probability order on ARAT and BBT score was: anode>cathode>bipolar>control. ConclusionCurrent evidence shows that the intervention effect of anodic stimulation on upper limb function of stroke patients may be better. Due to limited quality and quantity of the included studies, more high-quality studies are needed to verify above conclusion.
At present, fatigue state monitoring of upper limb movement generally relies solely on surface electromyographic signal (sEMG) to identify and classify fatigue, resulting in unstable results and certain limitations. This paper introduces the sEMG signal recognition and motion capture technology into the fatigue state monitoring process and proposes a fatigue analysis method combining an improved EMG fatigue threshold algorithm and biomechanical analysis. In this study, the right upper limb load elbow flexion test was used to simultaneously collect the biceps brachii sEMG signal and upper limb motion capture data, and at the same time the Borg Fatigue Subjective and Self-awareness Scale were used to record the fatigue feelings of the subjects. Then, the fatigue analysis method combining the EMG fatigue threshold algorithm and the biomechanical analysis was combined with four single types: mean power frequency (MPF), spectral moments ratio (SMR), fuzzy approximate entropy (fApEn) and Lempel-Ziv complexity (LZC). The test results of the evaluation index fatigue evaluation method were compared. The test results show that the method in this paper has a recognition rate of 98.6% for the overall fatigue state and 97%, 100%, and 99% for the three states of ease, transition and fatigue, which are more advantageous than other methods. The research results of this paper prove that the method in this paper can effectively prevent secondary injury caused by overtraining during upper limb exercises, and is of great significance for fatigue monitoring.
Objective To investigate the effectiveness of free superficial circumflex iliac artery flap (SCIP) combined with deep inferior epigastric perforator flap (DIEP) in repairing large soft tissue defects of upper extremities. MethodsBetween February 2017 and January 2021, free SCIP combined with DIEP was used to repair 15 patients with large soft tissue defects of upper extremities. There were 12 males and 3 females, aged from 34 to 52 years, with a median age of 41 years. The causes of injury were mechanical injury in 11 cases and traffic accident injury in 4 cases. There were 9 cases of circular skin defect in the forearm and 6 cases of skin defect around the upper arm and elbow joint, with the defect in size of 15.5 cm×10.5 cm to 26.5 cm×15.5 cm, accompanied by exposure of deep tissues such as tendons and bones. There were 7 cases with open fractures and 8 cases with vascular and nerve injuries. The time from injury to operation ranged from 7 to 14 days, with an average of 7.5 days. The flaps in size of 16.0 cm×11.0 cm to 27.0 cm×16.0 cm were harvested; the thickness of the flaps was 0.8-1.3 cm, and the excess fat tissue was removed under the microscope after harvesting. The length of proximal vascular pedicle was 5.0-7.0 cm, and of distal vascular pedicle was 3.0-5.0 cm. The donor site was closed and sutured directly, and the navel was reconstructed. Results The flaps survived successfully in 14 cases, and the arterial crisis occurred in 1 case at 10 hours after operation, and the flap survived after surgical exploration. All the wounds in the donor and recipient sites healed by first intention. All 15 patients were followed up 3-14 months, with an average of 10.5 months. The appearance, elasticity, and texture of flap were good without obvious bloat, contracture, or adhesion. The donor site healed well, no abdominal wall hernia was found, and the appearance of reconstructed navel was good, only linear scar left. At last follow-up, 12 cases were evaluated as excellent and 3 cases were good according to the evaluation criteria of flap function of the Chinese Medical Association Microsurgery Branch. The sensation recovered to \begin{document}${\rm{S}}_{3^+} $\end{document} in 7 cases and \begin{document}${\rm{S}}_3 $\end{document} in 8 cases. ConclusionFree SCIP combined with DIEP has a large excision area and excellent skin ductility. It is an effective clinical method for repairing large soft tissue defects of upper extremities.
ObjectiveTo explore the clinical effect of the end-traction upper limb rehabilitation training system on patients with upper limb motor dysfunction after stroke.MethodsPatients with upper limb motor dysfunction who were admitted to the Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University from September to November 2019 were selected. According to the software, the patients were randomly divided into the experimental group and the control group. Both groups received conventional medical treatment, basic rehabilitation, and activities of daily living training. In addition, the control group received traditional occupational therapy, while the experimental group received end-traction upper limb rehabilitation training. The training time of both groups was 30 min/ (times ·d) and 5 days per week. Rehabilitation evaluation and recording were performed before and after the four-week treatment in both groups using the simplified upper extremity Fugl-Meyer assessment (FMA) and the modified Barthel index (MBI).ResultsA total of 36 patients were enrolled, with 18 in each group. All patients completed the experiment, and no special discomfort was observed. Before the treatment, there was no statistically significant difference in FMA and MBI between the experimental group [(13.22±3.13) and (49.66±6.81) points] and the control group [(14.78±1.70) and (51.67±6.65) points] (t=1.858, 0.896; P=0.072, 0.377). After four-week treatment, FMA and MBI in both groups improved significantly (P<0.05); the difference between the experimental group [(27.56±15.68) and (73.55±8.72) points] and the control group [(17.67±6.73) and (65.33±9.20) points] was statistically significant (t=2.459, 2.751; P=0.019, 0.009).ConclusionsThe end-traction upper limb rehabilitation training system can significantly improve the upper limb motor function of patients with upper limb motor dysfunction after stroke and improve the patients’ daily life ability. It is worthy of clinical promotion and application.