Objective To investigate the effect of allogeneic chondrocytes-calcium alginate gel composite under the intervention of low intensive pulsed ultrasound (LIPUS) for repairing rabbit articular cartilage defects. Methods Bilateral knee articular cartilage were harvested from 8 2-week-old New Zealand white rabbits to separate the chondrocytes by mechanical-collagen type II enzyme digestion. The 3rd passage chondrocytes were diluted by 1.2% sodium alginate to 5 × 106 cells/mL, then mixed with CaCl2 solution to prepare chondrocytes-calcium alginate gel composite, which was treated with LIPUS for 3 days (F0: 1 MHz; PRF: 1 kHz; Amp: 60 mW/cm2; Cycle: 50; Time: 20 minutes). An articular cartilage defect of 3 mm in diameter and 3 mm in thickness was established in both knees of 18 New Zealand white rabbits (aged 28-35 weeks; weighing, 2.1-2.8 kg), and divided into 3 groups randomly, 6 rabbits in each group: LIPUS group, common group, and model group. Defect was repaired with LIPUS-intervention gel composite, non LIPUS-intervention gel composite in LIPUS group and common group, respectively; defect was not treated in the model group. The general condition of rabbits was observed after operation. The repair effect was evaluated by gross and histological observations, immunohistochemical staining, and Wakitani score at 8 and 12 weeks after operation. Results Defect was filled with hyaline chondroid tissue and white chondroid tissue in LIPUS and common groups, respectively. LIPUS group was better than common group in the surface smooth degree and the degree of integration with surrounding tissue. Defect was repaired slowly, and the new tissue had poor elasticity in model group. Histological observation and Wakitani score showed that LIPUS group had better repair than common group at 8 and 12 weeks after operation; the repair effect of the 2 groups was significantly better than that of model group (P lt; 0.05); and significant differences in repair effect were found between at 8 and 12 weeks in LIPUS and common groups (P lt; 0.05). The collagen type II positive expression area and absorbance (A) value of LIPUS and common groups were significantly higher than those of model group (P lt; 0.05) at 8 and 12 weeks after operation, and the expression of LIPUS group was superior to that of common group at 12 weeks (P lt; 0.05); and significant differences were found between at 8 and 12 weeks in LIPUS group (P lt; 0.05), but no significant difference between 2 time points in common and model groups (P gt; 0.05). Conclusion Allogeneic chondrocytes-calcium alginate gel composite can effectively repair articular cartilage defect. The effect of LIPUS optimized allogeneic chondrocytes-calcium alginate gel composite is better.
Objective
To realize the visualization of three-dimensional microstructure of rabbit sciatic nerve bundles by micro-CT and three-dimensional visualization software Mimics17.0.
Methods
The sciatic nerve tissues from 6 New Zealand rabbits were divided into 2 groups (n=3), and the sciatic nerve tissues were stained by 1% (group A) and 5% (group B) Lugol solution respectively. After staining for 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 hours, the imaging changes of specimens were observed by light microscope and micro-CT. The clear micro-CT images were exported to the Mimics software to complete the visualization of three-dimensional microstructure of rabbit sciatic nerve according to three-dimensional reconstruction tool.
Results
The clear three-dimensional microstructure images could be observed in group A at 2.5 hours after staining and in group B at 1.5 hours after staining by light microscope and micro-CT. The sciatic nerve of New Zealand rabbits were divides into 3 bundles and each of them was relatively fixed. There was no obvious crossing or mergers between each bundle. The cross-sectional area of each bundle was (0.425±0.013), (0.038±0.007), and (0.242±0.026) mm2 respectively. The digital model could clearly reflect the microstructure of the sciatic nerve at all cross sections.
Conclusion
The internal structure of New Zealand rabbits sciatic nerve can be clearly reflected by micro-CT scanning. It provides a reliable method for establishing a nerve microstructure database with large amount specimens.
Objective To separate each protein band from the nerve regeneration conditioned fluid(NRCF)and to study whether there are somenew and unknown neurotrophic factors in the protein bands with a relative molecular mass of 220×103. Methods The silicone nerve regenerationchambers were formed in the sciatic nerve of the 25 New Zealand rabbits (weight,1.8-2.5 kg), and NRCF was taken from it at 1 week after operation. The Nativepolyacrylamide gel electrophoresis (Native-PAGE) was used for separating the proteins from NRCF and detecting the relative molecular mass. The Western blot and ELISA were used to observe whether the protein bands [220×103 (Band a), (20-40)×103(Band c)] of NRCF could combine with the antibody of the known antibody of neurotrophic factor (NTF):nerve growth factor(NGF), glial cell-derived neurotrophic factor(GDNF), brainderived neurotrophic factor(BDNF), neurotrophin 3(NT-3), NT-4, ciliang neurotrophic factor(CNTF). Results Separated by Native-PAGE, NRCF mainly contained two protein bands:Band a had a relative molecular mass about 220×103, and Band c had a relative molecular mass about (20-40)×103. Band a could not combine with the antibodies of the NGF, BDNF, CNTF, and NT-3, but could combine with the antibody of NT-4.Band c could combine with the antibodies of NGF, BDNF, CNTF and NT-3, but could not combine with the antibodies of NT-4 and GDNF. Conclusion The protein bands with a relative molecular mass of 220×103 have ber neurotropic and neurotrophic effects than the protein bands with a relative molecular mass of (20-40)×103, which contains NGF,CNTF, etc. NT-4 just has a weak or no effect on the sympathetic neurone. This indicates that there is a new NTF in the protein bands with a relative molecular mass of 220×103, which only combines with the antibody of NT-4.
Objective To prepare the silk fibroin microcarrier loaded with clematis total saponins (CTS) (CTS-silk fibroin microcarrier), and to investigate the effect of microcarrier combined with chondrocytes on promoting rabbit knee articular cartilage defects repair. Methods CTS-silk fibroin microcarrier was prepared by high voltage electrostatic combined with freeze drying method using the mixture of 5% silk fibroin solution, 10 mg/mL CTS solution, and glycerin. The samples were characterized by scanning electron microscope and the cumulative release amount of CTS was detected. Meanwhile, unloaded silk fibroin microcarrier was also prepared. Chondrocytes were isolated from knee cartilage of 4-week-old New Zealand rabbits and cultured. The 3rd generation of chondrocytes were co-cultured with the two microcarriers respectively for 7 days in microgravity environment. During this period, the adhesion of chondrocytes to microcarriers was observed by inverted phase contrast microscope and scanning electron microscope, and the proliferation activity of cells was detected by cell counting kit 8 (CCK-8), and compared with normal cells. Thirty 3-month-old New Zealand rabbits were selected to make bilateral knee cartilage defects models and randomly divided into 3 groups (n=20). Knee cartilage defects in group A were not treated, and in groups B and C were filled with the unloaded silk fibroin microcarrier-chondrocyte complexes and CTS-silk fibroin microcarrier-chondrocyte complexes, respectively. At 12 weeks after operation, the levels of matrix metalloproteinase 9 (MMP-9), MMP-13, and tissue inhibitor of MMP 1 (TIMP-1) in articular fluid were detected by ELISA. The cartilage defects were collected for gross observation and histological observation (HE staining and toluidine blue staining). Western blot was used to detect the expressions of collagen type Ⅱ and proteoglycan. The inflammatory of joint synovium was observed by histological staining and inducible nitric oxide synthase (iNOS) immunohistochemical staining. Results The CTS-silk fibroin microcarrier was spherical, with a diameter between 300 and 500 μm, a porous surface, and a porosity of 35.63%±3.51%. CTS could be released slowly in microcarrier for a long time. Under microgravity, the chondrocytes attached to the surface of the two microcarriers increased gradually with the extension of culture time, and the proliferation activity of chondrocytes at 24 hours after co-culture was significantly higher than that of normal chondrocytes (P<0.05). There was no significant difference in proliferation activity of chondrocytes between the two microcarriers (P>0.05). In vivo experiment in animals showed that the levels of MMP-9 and MMP-13 in group C were significantly lower than those in groups A and B (P<0.05), and the level of TIMP-1 in group C was significantly higher (P<0.05). Compared with group A, the cartilage defects in groups B and C were filled with repaired tissue, and the repaired surface of group C was more complete and better combined with the surrounding cartilage. Histological observation and Western blot analysis showed that the International Cartilage Repair Scoring (ICRS) and the relative expression levels of collagen type Ⅱ and proteoglycan in groups B and C were significantly better than those in group A, and group C was significantly better than group B (P<0.05). The histological observation showed that the infiltration of synovial inflammatory cells and hyperplasia of small vessels significantly reduced in group C compared with groups A and B. iNOS immunohistochemical staining showed that the expression of iNOS in group C was significantly lower than that in groups A and B (P<0.05).Conclusion CTS-silk fibroin microcarrier has good CTS sustained release effect and biocompatibility, and can promote the repair of rabbit cartilage defect by carrying chondrocyte proliferation in microgravity environment.
Objective
To observe the chondrogenic differentiation of adipose-derived stem cells (ADSCs) by co-culturing chondrocytes and ADSCs.
Methods
ADSCs and chondrocytes were isolated and cultured from 8 healthy 4-month-old New Zealand rabbits (male or female, weighing 2.2-2.7 kg). ADSCs and chondrocytes at passage 2 were used. The 1 mL chondrocytes at concentration 2 × 104/mL and 1 mL ADSCs at concentration 2 × 104/mL were seeded on the upper layer and lower layer of Transwell 6-well plates separately in the experimental group, while ADSCs were cultured alone in the control group. The morphology changes of the induced ADSCs were observed by inverted phase contrast microscope. The glycosaminoglycan and collagen type II synthesized by the induced ADSCs were detected with toluidine blue staining and immunohistochemistry staining. The mRNA expressions of collagen type II, aggrecan, and SOX9 were detected with real-time fluorescent quantitative PCR.
Results
ADSCs in the experimental group gradually became chondrocytes-like in morphology and manifested as round; while ADSCs in the control group manifested as long spindle in morphology with whirlool growth pattern. At 14 days after co-culturing, the results of toluidine blue staining and immunohistochemistry staining were positive in the experimental group, while the results were negative in the control group. The results of real-time fluorescent quantitative PCR indicated that the expression levels of collagen type II, aggrecan, and SOX9 mRNA in the experimental group (1.43 ± 0.07, 2.13 ± 0.08, and 1.08 ± 0.08) were significantly higher than those in the control group (0.04 ± 0.03, 0.13 ± 0.04, and 0.10 ± 0.02) (P lt; 0.05).
Conclusion
ADSCs can differentiate into chondrocytes-like after co-culturing with chondrocytes.
ObjectiveTo investigate the effect of nicotinamide mononucleotide adenosyl transferase 3 (NMNAT3) on the mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells (BMSCs) under oxidative stress in vitro by regulating nicotinamide adenine dinucleotide (NAD+) levels.MethodsThe bone marrow of femur and tibia of New Zealand white rabbits were extracted. BMSCs were isolated and cultured in vitro by density gradient centrifugation combined with adherent culture. The third generation cells were identified by flow cytometry and multi-directional induction. Overexpression of NMNAT3 gene was transfected into rabbit BMSCs by enhanced green fluorescent protein (EGFP) labeled lentivirus (BMSCs/Lv-NMNAT3-EGFP), and then the expression of NMNAT3 was detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot and cell proliferation by cell counting kit 8 (CCK-8) method. BMSCs transfected with negative lentivirus (BMSCs/Lv-EGFP) and untransfected BMSCs were used as controls. The oxidative stress injury cell model was established by using H2O2 to treat rabbit BMSCs. According to the experimental treatment conditions, they were divided into 4 groups: Group A was normal BMSCs without H2O2 treatment; untransfected BMSCs, BMSCs/Lv-EGFP, and BMSCs/Lv-NMNAT3-EGFP in groups B, C, and D were treated with H2O2 simulated oxidative stress, respectively. The effects of NMNAT3 on the mitochondrial function of BMSCs under oxidative stress [changes of mitochondrial membrane potential, NAD+ and adenosine triphosphate (ATP) levels], the changes of anti-oxidative stress ability of BMSCs [reactive oxygen species (ROS) and malondialdehyde (MDA) levels, manganese superoxide dismutase (Mn-SOD) and catalase (CAT) activities], and the effects of BMSCs on senescence and apoptosis [senescence associated-β-galactosidase (SA-β-gal) staining and TUNEL staining] were detected after 24 hours of treatment.ResultsThe rabbit BMSCs were successfully isolated and cultured in vitro. The stable strain of rabbit BMSCs with high expression of NMNAT3 gene was successfully obtained by lentiviral transfection, and the expressions of NMNAT3 gene and protein significantly increased (P<0.05). There was no significant difference in the trend of cell proliferation compared with normal BMSCs. After treatment with H2O2, the function of mitochondria was damaged and apoptosis increased in all groups. However, compared with groups B and C, the group D showed that the mitochondrial function of BMSCs improved, the membrane potential increased, the level of NAD+ and ATP synthesis of mitochondria increased; the anti-oxidative stress ability of BMSCs enhanced, the levels of ROS and MDA decreased, and the activities of antioxidant enzymes (Mn-SOD, CAT) increased; and the proportion of SA-β-gal positive cells and the rate of apoptosis decreased. The differences in all indicators between group D and groups B and C were significant (P<0.05).ConclusionNMNAT3 can effectively improve the mitochondrial function of rabbit BMSCs via increasing the NAD+ levels, and enhance its anti-oxidative stress and improve the survival of BMSCs under oxidative stress conditions.
Objective To study the mechanism of restenosis of the vein graft and the effect of the grafting injury to the vein graft. Methods One side of the 36 healthy rabbits was randomly chosen as the V-A group, and on the side a 1.5cmlong femoral vein was obtained, and an 0.5-cm-long segment of the obtained femoral vein was separated as the control group. The remaining 1-cm-long femoral vein was inverted and was autogenously implanted into the femoral artery on the same side of the rabbit. The other side of the rabbits was chosen as the V-V group, and on this side a 1-cm-long femoral vein was obtained ex vivo and then was sutured in situ. The vein grafts on both sides were harvested 4 weeks after operation. The specimens from the harvested vein grafts were stained with HE and theelastic fiber Victoria blue for an observation on the histological changes in the walls of the vein grafts, and the specimens were also stained by the immunohistochemistry of the proliferating cell nuclear antigen (PCNA) for an observation on the wall cell proliferation of the vein grafts. The changes in the ultrastructure of the proliferated wall cells of the vein grafts were observed under electron microscope. The two sides of the rabbits were compared. Results The smooth muscle cells of the media developed hyperplasia, but theintima and the media remained unchanged in their thickness (3.50±0.41 μm, 12.23±1.59 μm) in the V-V group, with no difference when compared with the control group (3.40±0.37 μm, 12.14±1.62 μm); however, when compared with the V-A group (25.60±3.21 μm, 21.30±2.47 μm),there was a significant difference in the thickness (Plt;0.01). There were no cells positive for PCNA by the immunohistochemistry examination in the control group. The cells positive for PCNA were found in the intima and the media in both the V-V group and the V-A group; however, the percentageof the cells positive for PCNA in the intima and the media was significantly greater in the V-A group than in the V-V group (16.4%±1.9% and 36.5%±3.7% vs 5.9%±1.3% and 23.4%±3.4%, Plt;0.01). In the V-V group, the endothelial cell could be observed under transmis-sion electron microscope, which was flat and had a processlike villus at its free end, and the endothelial cells were closely arranged andhad hyperplasia of the smooth muscle cells in the media. But in the V-A group,the endothelial cells had an obvious hyperplasia with an irregular shape and a widened space between the cells, and in the intima a great amount of the smooth muscle cells could be observed, which had a broken basement membrane. The smooth muscle cells also had an obvious hyperplasia in the media. The shape and alignment of the endothelial cells in the control group were similar to those in the V-V group, but the hyperplasia of the smooth muscle cells was not observed in the media. Conclusion The grafting injury can cause hyperplasia ofthe vascular wall cells, and if the hemodynamics is changed simultaneously, more serious hyperplasia and cell migration can be observed from the media to the intima, resultingin restenosis of the blood vessels. So, if we can reduce the grafting injury and improve the microcirculation of the vein graft, we may find out the methods ofpreventing restenosis of the vein graft. The animal model of the V-V graftcan help to understand the mechanism of restenosis of the vein graft.
Objective To observe effects of the core binding factor α1 (Cbfα1) in its promoting differentiation of the rabbit marrow mesenchym al stem cells (MSCs) into osteoblasts. Methods The rabbit marrow MSCs were isolated and cult ured in vitro and were divided into 3 groups. In the control group, the marr ow MSCs were cultured by DMEM; in the single inducement group, they were cultured by the condition medium (DMEM, 10% fetal bovine serum, dexamethasone 10 mmol/L, vitamin C 50 mg/L, and βGP 10 mmol/L); and in the experimental group , the ywere transfected with AdEasy1/Cbfα1,and then were cultured by the condition m edium. The alkaline phosphatase(ALP) activity and the experission of osteocalcin as the osteoblast markers were measured with the chemohistological and immunohi stochemical methods at 3 days,1,2,3,and 4 weeks after inducement. Results More than 90% MSCs were grown well in vitro. The GFP was positive in MSCs after their being transfectived with AdEasy1/Cbfα1. The ALP activity and the experission of osteocalcin were significantly upregulated in the transfection group compared with those in the single inducement group and the control group at 1, 2, 3, and 4 weeks (Plt;0.05).The mineralized node began to appear at 2 weeks in the experiment al group and the single induction group, but did not appear in control group. Conclusion Cbfα1 can obviously promote differentiation of the rabb it marrow mesenchymal stem cells into the osteoblasts.
Objective To evaluate the effect of WO-1 on repair of the bone defect in the New Zealand rabbit radius by an oral or local administration. Methods Bone defects were surgically created in the bilateral radii of 36 Zealand rabbits (1.6-2.0 kg), which were randomly divided into3 groups. In Group A, the defective areas were given WO-1 0.1 ml (50 mg/ml) by the local injections; in Group B, the rabbits were given WO-1 5 mg each day by the oral administration. Group C was used as a control group. Among each of the 3 groups, 4 rabbits were randomly selected and were sacrificed at 20, 30 and 60 days after operation, respectively. Then, the serological, X-ray and histological examinations were performed. Results The serum alkaline phosphatase and bone glaprotein levels were significantly higher at 20 and 30 days after operation in Groups A and B than in Group C, but significantly lower at 60 days after operation in Groups A and B than in Group C(Plt;0.01). The X-ray and histological examinations at 20, 30 and 60 days after operation revealed that the callus formation and remodeling were earlier in Groups A and B thanin Group C, and the remodeling was earlier and better in Group A than in Group B. Conclusion WO-1 can promote the repair of the radial defect in a rabbit; however, further studies on the doseeffect relationship, administration time, and administration route are still needed.
Objective?To analyze the effect of different surgery techniques on the tendon-bone healing of rotator cuff insertion.?Methods?Forty-two adult Japanese rabbits, weighing 2.0-2.5 kg and male or female, were selected. Thirty-six rabbits were given a sharply left-lateral tenotomy of the supraspinatus tendon with subsequent re-attachment of the tendon. According to the depth of re-attachment, 36 rabbits were equally randomized into the cancellous-fixation group (a cancellous bed was prepared with a dental burr) and the cortical-fixation group (the same treatment was performed except the preparation of the bone bed). Six rabbits served as the controls without treatment (control group). At 4 and 8 weeks after operation, the general observation, HE staining, and the biomechanical test were performed.?Results?At 4 weeks after operation, the supraspinatus-humerus specimens morphologically showed atrophy and vague between tendon and new bone in the cancellous-fixation group and the cortical-fixation group; at 8 weeks, no obvious difference was observed between 2 groups and the control group. The histological results of the cortical-fixation group at 4 weeks revealed the interface between tendon and new bone became smooth. The interface became transitional at 8 weeks, and the shape of bone tissue was nearly normal. The interface obtained from the cancellous-fixation group at 4 weeks became sclerotic, and collagen fibers formed in disorder. With ingrowth of new bone and re-establishment of collagen-fiber continuity at 8 weeks, thickness of interface became thin, and bone tissue was remodeling. The ultimate load were significantly higher in the cortical-fixation group than in the cancellous-fixation group at both 4 and 8 weeks, and the results gained at 8 weeks is significantly higher than that at 4 weeks in each group (P lt; 0.05). Except rupture strength at 4 weeks between 2 groups and all tensile strength (P gt; 0.05), there were significant differences in the results of others (P lt; 0.05).?Conclusion?In this model, the tendon-bone healing process and the biomechanical properties of cortical-fixation is superior to those of cancellous-fixation.