1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        華西醫學期刊出版社
        作者
        • 標題
        • 作者
        • 關鍵詞
        • 摘要
        高級搜索
        高級搜索

        搜索

        找到 作者 包含"周怡君" 1條結果
        • 聯合主成分分析-小波與整體平均經驗模態分解的鋒電位去噪方法

          多通道微電極陣列記錄的鋒電位(Spike)十分微弱,極易受干擾,其含噪的特性影響了 Spike 檢出的準確率。針對 Spike 檢測過程中通常存在的獨立白噪聲、相關噪聲與有色噪聲,本文結合主成分分析(PCA)、小波分析和自適應時頻分析,提出 PCA-小波(PCAW)與整體平均經驗模態分解(EEMD)聯合的去噪新方法(PCWE)。首先,利用 PCA 提取多通道神經信號通道間的主成分作為相關噪聲去除;然后利用小波閾值法對獨立白噪聲進行去除;最后利用 EEMD 把噪聲分解到各層本質模態函數中,對有色噪聲進行去除。仿真結果表明,PCWE 使信噪比約提高 2.67 dB,標準差約減小 0.4 μV,顯著提高了 Spike 的檢出精確率;實測數據結果表明,PCWE 能使信噪比約提高 1.33 dB,標準差約減小 18.33 μV,表現出良好的去噪性能。本文研究結果表明,PCWE 可以提高 Spike 信號的可靠性,或可為神經信號的編碼解碼提供一種新型有效的鋒電位去噪方法。

          發表時間:2020-06-28 07:05 導出 下載 收藏 掃碼
        共1頁 上一頁 1 下一頁

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品