Objective To investigate the inhibitive effect of E2F decoy oligodeoxynucleotides (E2F decoy ODNs) on cultured human retinal pigment epithelial (HRPE) cells.Methods E2F decoy ODNs or scramble decoy ODNs at varied concentrations were put into the HRPE cells mediated by lipofectamineTM2000. The proliferative activity of HRPE was detected by methythiazolyl-terazollium assay, and the competitive combinative activity of E2F decoy ODNs and transcription factor E2F was detected by electrophoresis mobility-shift assay. Results The proliferation of HRPE was inhibited markedly by E2F decoy ODNs at the concentration of 0.2 μmol/L (P=0.002) in a dose-dependent manner but not by scrambled decoy. The results of electrophoresis mobility-shift assay showed that the combinative activity of transcription factor E2F was abolished completely by E2F decoy ODNs. Conclusions E2F decoy ODNs may sequence-specifically inhibit the combinative activity of transcripti on factor E2F,and inhibit the proliferation of HRPE cells.(Chin J Ocul Fundus Dis,2004,20:182-185)
Objective To identify the effect of β-endorphin in the development of paresthesia in hypertrophic scar by detecting the expression and content of β-endorphin in human normal skin and hypertrophic scar. Methods Hypertrophic scar samples were collected from 42 patients with hypertrophic scar for 1-20 years (mean, 4.5 years), including 15 males and27 females with an average age of 32.6 years (range, 16-50 years). According to the kind of paresthesia, they were divided into 3 gourps: non-pain-pruritus group (n=20), pruritus group (n=14), and pain-pruritus group (n=8). Normal skin samples (normal skin group) were harvested from 5 patients undergoing skin grafting surgery, including 3 males and 2 females with an average age of 24.6 years (range, 15-37 years). The immunofluorescence method was used to observe the expression of β-endorphin and ELISA method to detect the concentrations of β-endorphin in the tissues. Results The β-endorphin expressed in all samples, and it expressed around peri pheral nerve fibers in the dermis, fibroblasts, and monocytoid cells princi pally; and it expressed significantly ber in pruritus group and pain-pruritus group than in non-pain-pruritus group and normal skin group. The β-endorphin content was (617.401 ± 97.518) pg/mL in non-pain-pruritus group, (739.543 ± 94.149) pg/mL in pruritus group, (623.294 ± 149.613) pg/mL in pain-pruritus group, and (319.734 ± 85.301) pg/mL in normal skin group; it was significantly higher in non-pain-pruritus group, pruritus group, and pain-pruritus group than in normal skin group (P lt; 0.05); it was significantly higher in pruritus group than in non-pain-pruritus group and pain-pruritus group (P lt; 0.05); and there was no significant difference between non-pain-pruritus group and pain-pruritus group (P gt; 0.05). Conclusion The expression of β-endorphin is high in hypertrophic scar, it may paly an important role in process of pruritus in these patients.
Objective To investigate an effect of compressive stress on proliferation and apoptosis of human hyperplastic scar fibroblasts(HSFb) in vitro. Methods HSFb were obtained from a 20 year old female patient who developed a hyperplastic scar 3 months after operation for a largearea burn. HSFb were isolated, and were cultured in vitro with the simplified airpressure controlled cellculture instrument, and then they were randomly divided into the following 8 groups: the control group (no stress) and the 7 continuous compressive stress groups, which respectively underwent the 5, 10, 15, 25, 50, 100 and 150mmHg(1mmHg=0.133 kPa) pressure treatment for 4d ays. The absorbance (A) of the cell and the inhibition ratio (IR) of the cell proliferation were determined by the MTT assay, the cell growth cycle was determined by the flow cytometer, and the cell apoptosis was observed by the AnnexinV binding with PI labeling method. Results In the 5, 10, 15, 25, 50, 100 and 150mmHg pressure groups and the control group, the A values of the cells were 0.228±0.004, 0.226±0.003, 0.213±0.005, 0.180±0.005, 0.172±0.007, 0.165±0.004, 0.164±0.004 and 0.230±0.005, respectively; the IRs of the cell proliferation were 0.8%,2.0%,7.3%,21.7%,252%, 28.2% and 0, respectively;the ratios of the cells in G1 were 71.80%±0.44%, 72.32%±0.40%, 74.56%±1.01%, 82.82%±2.76%, 86.77%±2.06%, 88.23%±1.27%, 89.11%±1.74% and 71.6%±0.49%,respectively; the cell apoptosis ratios were 4.22%±0.49%, 5.12%±0.74% , 8.58%±0.79%, 19.28%±1.40%, 25.60%±1.21%, 3580%±2.39%, 36.18%±2.38% and 4.00%±0.36%, respectively. In the 5 and 10mmHggroups there were no statistically significant differences in all the above parameters when compared with those in the control group (P>0.05); however, in the 15, 25,50, 100 and 150mmHg groups there were statistically significant differences in the above parameters when compared with those in the control group (P<0.05). Furthermore, in the 10, 15, 25 and 50 mmHg groups, there were statistically significant differences in the Avalue of the cells and the ratios of the cells in G 1 when compared with each other (P<0.01). By contrast, there were no statistically significant differences in the 50, 100 and 150 mmHg groups when compared witheach other (P>0.05). In the 10, 15, 25, 50 and 100mmHg groups there werestatistically significant differences in the cell apoptosis ratio when comparedwith each other (P<0.01). In the 100 and 150 mmHg groups there were no such statistically significant differences when compared with each other (P>0.05).Conclusion A continuous compressive stress when given properly can have a combined effect of the proliferation inhibition and the apoptosis promotion on HSFb in vitro, and this kind of combined effects can becomeone of the important mechanisms for the pressure therapy in treating hyperplastic scar.
To study the variations of l ipid peroxidation products and copper, zinc-superoxide dismutase(CuZn-SOD) in pathological scars (hypertrophic scars and keloids). Methods The specimens were gained from patients of voluntary contributions from May 2005 to August 2005. The tissues of hypertrophic scar (10 cases, aged 16-35 years, the mean course of disease was 2.2 years), keloid (10 cases, aged 17-32 years, the mean course of disease was 8 months) and normal skin (8 cases, aged 16-34 years) were obtained. The content of malonaldehyde (MDA)and CuZn-SOD activity were detected by spectrophotometric method. The expression of CuZn-SOD was evaluated by immunohistochemistry technique. Results The contents of MDA and CuZn-SOD activity were significantly higher in hypertrophic scars[MDA (1.139 0 ± 0.106 7)nmoL/mg prot, CuZn-SOD (31.65 ± 2.21)U/mg prot, (P lt; 0.05)]and keloids[MDA (1.190 0 ± 0.074 8)nmoL/ mg prot, CuZn-SOD (34.36 ± 5.01)U/mg prot (P lt; 0.05)] than those of normal skin tissues [MDA (0.821 3 ± 0.086 4)nmoL/mg prot, CuZn-SOD (20.60 ± 5.56)U/mg prot]. Immunohistochemical studies indicated that the brown particles were CuZn-SOD positive signals, which mainly located cytoplasm in normal skin tissues, hypertrophic scars as well as keloids epidermal keratinocytes and dermal fibroblasts. CuZn-SOD expression evaluation in hypertrophic scars (4.14 ± 0.90, P lt; 0.05) and keloids epidermal keratinocytes (4.43 ± 0.79, P lt; 0.05) markedly increased when compared with normal skin tissues (2.20 ± 0.45). The expression of CuZn-SODin hypertrophic scars (4.00 ± 0.82, P lt; 0.05) and keloids dermal fibroblasts (4.43 ± 0.53, P lt; 0.05) were significantly higher than that of normal skin tissues (1.60 ± 0.89). There were no differences in the content of MDA, CuZn-SOD activity and expression evaluation between hypertrophic scars and keloids (P gt; 0.05). Conclusion In pathological scars, the contents of MDA and CuZn-SOD activity increase and the expressions of CuZn-SOD are enlarged.
Purpose
To study the possibility of prevention of proliferative vitreoretinopathy(PVR) by transduction of exogenous gene in vivo.
Methods
PVR model of rabbits was induced by intravitreal injection of fibroblasts.beta;-galactosidase (lacZ) gene as a reporter gene was transfered into the vitreous of PVR model eyes mediated by retroviral vector, and the expression of the gene in eye tissues was determined . Gene transfection was done on the 6th day after fibroblasts injection,and the dosage of intravitreal injection of reporter gene was 0.1ml PLXSN/lacZ serum-free supernatant (1.1times;106 cfu/ml).
Results
lacZ gene expression was seen in proliferative membranes after gene transfection, and the expression was located maily at the surface of PVR membrane.The reporter gene expression lasted at least more than 30 days.No expression was found in retinal tissues.
Conclusions
Retrovirus mediated gene can be directionally transducted in PVR membrane,and might possess the feasibility of gene therapy for PVR.
(Chin J Ocul Fundus Dis, 2001,17:224-226)
Objective To detect the expression of heat shock protein 47 mRNA in pathological scar tissue by using real-time fluorescent quantitative reversetranscription-polymerase chain reaction (RT-PCR). Methods The tissues of normal skin(n=6), hypertrophic scar(n=6) and keloid(n=6) were adopted, which were diagnosised by Pathology Department. Based on fluorescent TaqMan methodology, the real-time fluorescent quantitative RT-PCR were adopted to detect the expression ofheat shock protein 47 mRNA. Results Compared with normal skin tissue(0.019±0.021)×105, the expressions of heat shock protein47 cDNA of hypertrophic scar tissue(1.233±1.039)×105 and keloid tissue(1.222±0.707)×105 were higher, being significant differences(Plt;0.05). Conclusion A fluorescent quantitative method was successfully applied to detecting the expression of heat shock protein 47 mRNA. Heat shock protein 47 may play an important role in promoting the formation of pathological scar tissue.