OBJECTIVE: To explore an effective method to repair the abdominal wall defect. METHODS: From July 1996 to December 2000, 7 cases with abdominal wall defect were repaired by pedicle graft of intestine seromuscular layer and skin graft, among them, intestinal fistula caused by previous injury during operation in 4 cases, abdominal wall defect caused by infection after primary fistulization of colon tumor in 2 cases, abdominal wall invaded by intestinal tumor in 1 case. Exploratory laparotomy was performed under general anesthesia, the infective and edematous tissue around abdominal wall defect was gotten rid off, and the pathologic intestine was removed. A segment of intestine with mesentery was intercepted, and the intestine along the longitudinal axis offside mesentery was cutted, the mucous layer of intestine was scraped. The intestine seromuscular layer was sutured to the margin of abdominal wall defect, and grafted by intermediate split thickness skin. RESULTS: The abdominal wall wound in 6 cases were healed by first intention, but part of grafted skin was necrosed, and it was healed by second skin graft. No intestinal anastomotic leakage was observed in all cases. Followed up 1 to 2 years, there were no abdominal hernia or abdominal internal hernia. All the cases could normally defecate. The nutriture of all cases were improved remarkably. CONCLUSION: Pedicle graft of intestine seromuscular layer is a reliable method to repair abdominal wall defect with low regional tension, abundant blood supply and high successful rate.
Objective To investigate the cl inical effect of Meek technique skin graft in treating exceptionally large area burns. Methods The cl inical data were retrospectively analysed from 10 cases of exceptionally large area burns treated with Meek technique skin graft from April 2009 to February 2010 (Meek group), and were compared with those from 10 casesof exceptionally large area burns treated with the particle skin with large sheet of skin allograft transplantation from January 2002 to December 2006 (particle skin group). In Meek group, there were 8 males and 2 females with an average age of 34.5 years (range, 5-55 years), including 6 cases of flame burns, 2 cases of hot l iquid burns, 1 case of electrical burn, and 1 case of hightemperature dust burn. The burn area was 82.6% ± 3.1% of total body surface area (TBSA). The most were deep II degree to III degree burns. The time from burn to hospital ization was (3.5 ± 1.3) hours. In particle skin group, there were 8 males and 2 females with an average age of 36.8 years (range, 18-62 years), including 5 cases of flame burns, 2 cases of hot l iquid burns, and 3 cases of gunpowder explosion injury. The burn area was 84.1% ± 7.4% of TBSA. The most were deep II degree to III degree burns. The time from burn to hospital ization was (4.9 ± 2.2) hours. There was no significant difference in general data between 2 groups (P gt; 0.05). Results The skin graft survival rate, the time of skin fusion, the systemic wound heal ing time, and the treatment cost of 1% of burn area were 91.23% ± 5.61%, (11.14 ± 2.12) days, (38.89 ± 10.36) days, and (5 113.28 ± 552.44) yuan in Meek group, respectively; and were 78.65% ± 12.29%, (18.37 ± 4.63)days, (48.73 ± 16.92) days, and (7 386.36 ± 867.64) yuan in particle skin group; showing significant differences between 2 groups (P lt; 0.05). Conclusion Meek technique skin graft has good effect in treating exceptionally large area burns with the advantages of high survival rate of skin graft, short time of skin fusion, and low treatment cost of 1% of burn area.
ObjectiveTo evaluate the clinical value of skin stretching device in repair of diabetic foot wound.MethodsA retrospective analysis was made on the clinical data of 48 cases with diabetic foot wound who were treated with skin stretching device (trial group, n=24) and with the vacuum sealing drainage combined with skin graft (control group, n=24) respectively between October 2015 and July 2016. There was no significant difference in gender, age, side, course of disease, TEXAS stage between 2 groups (P>0.05). Both patients in 2 groups were treated with sensitive antibiotics according to the results of bacterial culture.ResultsOne case in control group was infected and the skin graft failed, and 1 case in trial group was infected after the treatment, and the two wounds healed after symptomatic treatment. The wounds of the other patients healed successfully, and the healing time of the trial group was significantly shorter than that of the control group [(12.8±11.6) days vs. (22.3±10.4) days; t=2.987, P=0.005). All patients were followed up 3-12 months after operation, and no wound dehiscence or recurrence occurred during follow-up.ConclusionCompared with the vacuum sealing drainage combined with skin graft, the application of skin stretching device in the repair of diabetic foot wound has advantages, such as easy to operate, shorten the wound healing time, and the appearance of wound was similar with the adjacent skin.
Objective To observe the effectiveness of vacuum seal ing drainage (VSD) combined with anti-takenskin graft on open amputation wound by comparing with direct anti-taken skin graft. Methods Between March 2005 andJune 2010, 60 cases of amputation wounds for limbs open fractures were selected by using the random single-blind method.The amputation wounds were treated with VSD combined with anti-taken skin graft (test group, n=30) and direct anti-takenskin graft (control group, n=30). No significant difference was found in age, gender, injury cause, amputation level, defect size,preoperative albumin index, or injury time between 2 groups (P gt; 0.05). In test group, the redundant stump skin was usedto prepare reattached staggered-meshed middle-thickness skin flap by using a drum dermatome deal ing after amputation,which was transplanted amputation wounds, and then the skin surface was covered with VSD for continuous negative pressuredrainage for 7-10 days. In control group, wounds were covered by anti-taken thickness skin flap directly after amputation, andconventional dress changing was given. Results To observe the survival condition of the skin graft in test group, the VSDdevice was removed at 8 days after operation. The skin graft survival rate, wound infection rate, reamputation rate, times ofdressing change, and the hospital ization days in test group were significantly better than those in control group [ 90.0% vs.63.3%, 3.3% vs. 20.0%, 0 vs. 13.3%, (2.0 ± 0.5) times vs. (8.0 ± 1.5) times, and (12.0 ± 2.6) days vs. (18.0 ± 3.2) days, respectively](P lt; 0.05). The patients were followed up 1-3 years with an average of 2 years. At last follow-up, the scar area and grading, and twopointdiscrimination of wound in test group were better than those in control group, showing significant differences (P lt; 0.05).No obvious swelling occurred at the residual limbs in 2 groups. The limb pain incidence and the residual limb length were betterin test group than those in control group (P lt; 0.05). Whereas, no significant difference was found in the shape of the residual limbs between 2 groups (P gt; 0.05). In comparison with the contralateral limbs, the muscle had disuse atrophy and decreasedstrength in residual limbs of 2 groups. There was significant difference in the muscle strength between normal and affected limbs(P lt; 0.05), but no significant difference was found in affected limbs between 2 groups (P gt; 0.05). Conclusion Comparedwith direct anti-taken skin graft on amputation wound, the wound could be closed primarily by using the VSD combined withanti-taken skin graft. At the same time it could achieve better wound drainage, reduce infection rate, promote good adhesion ofwound, improve skin survival rate, and are beneficial to lower the amputation level, so it is an ideal way to deal with amputationwound in the phase I.