神經影像技術目前已經應用于精神分裂癥的診斷。為了提升基于單模態神經影像的精神分裂癥計算機輔助診斷(CAD)的性能,本文提出一種基于特權信息學習(LUPI)分類器的集成學習算法。該算法首先對單模態數據采用極限學習機-自編碼器(ELM-AE)進行特征二次學習,然后通過隨機映射算法將高維特征隨機分成多個子空間,并進行兩兩組合形成源領域和目標領域數據對,用于訓練多個支持向量機+(SVM+)弱分類器,最終通過集成學習獲得一個強分類器,實現有效的模式分類。本算法在公開的精神分裂癥神經影像數據庫中進行了實驗,包括結構磁共振成像和功能磁共振成像數據。結果表明該算法取得了最優的診斷結果,其在基于結構磁共振成像診斷的分類精度、敏感性和特異性分別可以達到 72.12% ± 8.20%、73.50% ± 15.44% 和 70.93% ± 12.93%,而基于功能磁共振成像診斷的分類精度、敏感性和特異性分別為 72.33% ± 8.95%、68.50% ± 16.58%、75.73% ± 16.10%。本文算法的主要創新點在于克服了傳統的 LUPI 分類器需要額外的特權信息模態的不足,可以直接應用于單模態數據分類問題,而且還提升了分類性能,因此具有較為廣泛的應用前景。