ObjectiveTo identify the risk factors of Intensive Care Unit (ICU) nosocomial infection in ICU ward in a first-class hospital in Wuxi, and discuss the effective control measures, in order to provide evidence for making strategies in preventing and controlling nosocomial infection.
MethodsAccording to the principle of random sampling and with the use of case-control study, a sample of 100 nosocomial infection patients were selected randomly from January 2012 to December 2014 as survey group, and another 100 patients without nosocomial infection as control group. The data were input using EpiData 2.0, and SPSS 13.0 was used for statistical analysis; t-test and χ2 test were conducted, and the risk factors were analyzed using multi-variate logistic regression model. The significant level of P-value was 0.05.
ResultsBased on the results of univariate analysis, there were 13 risk factors for ICU nosocomial infection, including diabetes mellitus, hypoproteinemia, being bedridden, surgical operation, immunosuppression, glucocorticoids, organ transplantation, tracheal intubation, length of hospitalization, length of mechanical ventilation, length of central venous catheter, length of urinary catheter, and length of nasogastric tube indwelling. Multi-variate logistic analysis indicated that hospitalization of 7 days or longer[OR=1.106, 95%CI (1.025, 1.096), P=0.001], diabetes mellitus[OR=2.770, 95%CI (1.068, 7.186), P=0.036], surgical operation[OR=7.524, 95%CI (2.352, 24.063), P=0.001], mechanical ventilation of 7 days or longer[OR=1.222, 95%CI (1.116, 1.339), P<0.001], and nasogastric tube indwelling of 7 days or longer[OR=1.110, 95%CI (1.035, 1.190), P=0.003] were considered as independent risk factors for ICU nosocomial infection.
ConclusionHospitalization of 7 days or longer, diabetes mellitus, surgical operation, tracheal intubation of 7 days or longer, and gastric intubation of 7 days or longer are the major risk factors for nosocomial infection in ICU ward. Advanced intervention and comprehensive prevention measures are helpful to reduce the nosocomial infection rate and ensure the safety of medical treatment.
Antimicrobial stewardship (AMS) is an important means to control bacterial resistance. The unique situation of intensive care unit (ICU) poses a challenge to AMS. This article reviews the literature on AMS in the ICU at home and abroad in recent years, and summarizes the related measures of AMS. Effective AMS measures in the ICU include setting up a multidisciplinary AMS team, using rapid microbial diagnosis technology to shorten the time of diagnosis, using non-culture methods to assess the necessity of antimicrobial therapy for patients with suspected sepsis, and evaluating the effectiveness of antimicrobial therapy as early as possible and optimizing it. These initiatives aim to increase the rational use of antimicrobials in ICU, reduce the risk of multidrug-resistant infections, and improve patients’ condition.
Objective To investigate the drug resistance and homogeneous analysis of Acinetobacter baumanii in emergency intensive care unit ( EICU) . Methods Four multidrug-resistant Acinetobacter baumannii ( MDR-Ab) strains isolated fromnosocomial inpatients fromJuly 25 to September 7 in 2009 were collected and tested for drug sensitivity and MIC determination as well. The A. baumannii isolates were typed with pulsed-field gel electrophoresis ( PFGE) to determine whether they derived fromthe same clone.Results Four isolates from nosocomial inpatients were resistant to multiple antibiotics including carbapenem. The PFGE types identified from four isolates were A and B. The A. baumannii isolates did not derived from the same clone. Conclusion The prevalence of nosocomial infection is not due to transmission of the same strains among different individuals in EICU.
ObjectiveTo explore the effects of burn ward cleaning methods on multi-drug resistant bacteria infection, in order to improve and optimize the cleaning process and method.
MethodsFrom November 2012 to October 2013, the cleaning and disinfection methods in our burn wards were regarded as the traditional cleaning methods, and from November 2013 to October 2014, the cleaning and disinfection methods were called the improved cleaning methods (new system cleaning methods). By retrospective analysis, we compared the infection rates of multi-drug resistant bacteria before and after the implementation of the new system cleaning methods.
ResultsNew system methods were used in the ward environment cleaning and disinfection. The infection rate of multi-drug resistant bacteria before and after the implementation of the new system cleaning methods were 12.414‰ and 5.922‰ respectively. The methicillin resistant Staphylococcus aureus infection rate was 7.286‰ and 3.718‰, and the carbon-resistant Pseudomonas aeruginosa infection rate was 2.699‰ and 0.689‰. Both differences were significant (P < 0.05). The carbon-resistant Acinetobacter baumanii infection rate was 2.429‰ and 1.515‰ before and after the implementation of the new methods with no significant difference (P > 0.05).
ConclusionAdopting new system to carry out cleaning can effectively reduce the infection rate of multi-drug resistant bacteria in the burn ward, and it is worthy of clinical popularization and application.
ObjectiveTo evaluate the effect of disinfection measures in the isolation ward of ICU in severe patients infected with the Omilkerong variant of the new coronavirus, and to optimize the infection control measures. MethodsReferring to the patient's epidemiological and nucleic acid sample data, nucleic acid sampling was performed on the isolated ward environment by surface sampling method, and the nucleic acid Ct value of virus was detected by parallel fluorescence PCR method. The aerosol was collected by a wet-wall cyclone sampler, and the nucleic acid Ct value of the virus was detected by parallel fluorescence PCR. ResultsBefore daily disinfection, SARS-CoV-2 positive samples were found on the surface of the patient's ward and air sampling after the tracheoscopic tracheostomy. No positive samples of SARS-CoV-2 were found on the surface of articles and air in the patient's ward after daily disinfection. ConclusionThe daily disinfection measures of the hospital can achieve the effect of SARS-CoV-2 disinfection, which suggests that the surface of the articles in the ward after invasive operations such as tracheostomy and tracheoscopy, especially within 2 meters of the tracheostomy and the tracheostomy, is the key part of disinfection, which needs to be paid attention to.