ObjectiveTo study immunodepression effect of bone marrow-derived mesenchymal stem cell (BMSC) on acute asthmatic airway inflammation by galectin-1 (gal-1) in vivo.MethodsEighty-five female BALB/c mice were equally randomized into normal control group, asthmatic group, BMSC treatment group, gal-1 treatment group and BMSC and gal-1 inhibitor group. Ovalbumin (OVA) was used to establish acute asthmatic model. Total cell number and differential cell analysis in each group in bronchoalveolar lavage fluid (BALF) were determined. Furthermore, hematoxylin-eosin and periodic-acid Schiff staining was used to compare airway inflammation among five groups. Measurement of cytokines, including interleukin (IL) -4, IL-5 and gal-1 in BALF and OVA specific IgE (OVA-IgE) in serum were evaluated by enzyme linked immunosorbent assay. Moreover, dendritic cell (DC) in lung tissue was sorted by immunomagnetic beads and its MAPK signal pathway was analyzed by western blotting among five groups.ResultsAccumulation of inflammation cells, particularly eosinophils around airway and in BALF was evident in asthmatic mouse model, meanwhile hyperplasia of Goblet cell was also obvious in asthmatic group. BMSC engraftment or gal-1 infusion significantly reduced airway inflammation and hyperplasia of Goblet cell and the number of inflammation cells in BALF, especially eosinophils attenuated dramatically. However, there was no effect on airway inflammation and hyperplasia of Goblet Cell by simultaneous infusion BMSC engraftment and gal-1 inhibitor. Compared to normal control group, the level of IL-4, IL-5 in BALF and OVA-IgE in serum was increased remarkably in asthmatic group, but the level of gal-1 reduced obviously. Moreover, infusion of BMSC or gal-1 could mitigate the level of IL-4, IL-5 in BALF and OVA-IgE in serum and increase the level of gal-1 in asthmatic mouse. However, infusion with both BMSC and gal-1 inhibitor exerted no effect on cytokine and OVA-IgE in asthmatic mouse. DC was sorted by immunomagnetic beads and western blotting was used to detect the expression of MAPK signal pathway among five groups. The expression of ERK phosphorylation in asthmatic group was much lower than that in normal control group. On the contrary, the expression of p38 phosphorylation was much higher than that in normal control group. BMSC engraftment or gal-1 infusion significantly activated the ERK pathway and inhibited the p38 MARP pathway on asthmatic mouse DC. Nevertheless, the expression of ERK phosphorylation and p38 phosphorylation for group with BMSC and gal-1 inhibitor infusion was between the level of asthmatic group and normal control group.ConclusionsBMSC infusion alleviates airway inflammation in asthmatic mouse, especially weakens eosinophils infiltration, and the underlying mechanism might be protective effect of gal-1 secreted by BMSC which plays a role in lung tissue DC and regulates the DC expression of MAPK signal pathway.
ObjectiveThrough measuring fractional exhaled nitric oxide (FeNO) and eosinophil levels of peripheral blood in chronic obstructive pulmonary disease (COPD) patients with different phenotype of acute exacerbation frequency, to predict the therapeutic effect of glucocorticoid therapy and guide the clinical treatment of different subtypes patients with acute exacerbations of COPD.MethodsA total of 127 patients with acute exacerbation of COPD in Suining Central Hospital from February 2017 to October 2019 were recruited. They were divided four groups according to the number of acute exacerbations in the past one year and the treatment scheme, ie. a frequent acute exacerbation with glucocorticoid treatment group (34 cases), a frequent acute exacerbation with non-glucocorticoid treatment group (31 cases), a non-frequent acute exacerbation with glucocorticoid treatment group (30 cases), and a non-frequent acute exacerbation with non-glucocorticoid treatment group (32 cases). FeNO value, eosinophil ratio in peripheral blood, COPD assessment test (CAT) score, and interleukin-8 (IL-8) concentration were measured before and on the 10th day of treatment, and the differences within group and between groups before and after treatment were compared.ResultsCAT score, FeNO, eosinophil ratio and IL-8 level in the four groups were significantly improved on the 10th day after treatment (all P<0.05). The declines of FeNO value, eosinophil ratio, and IL-8 level on the 10th day of treatment compared with those before treatment in the frequent acute exacerbation with glucocorticoid treatment group and the frequent acute exacerbations with non-glucocorticoid treatment group were larger than those in the non-frequent acute exacerbation with glucocorticoid treatment group and the non-frequent acute exacerbation with non-glucocorticoid treatment group (all P<0.05). The declines of FeNO value, blood eosinophil ratio and IL-8 level in the frequent acute exacerbation with glucocorticoid treatment group were also statistically significantly larger than those in the frequent acute exacerbations with non-glucocorticoid treatment group (all P<0.05). The improvement of CAT score in the frequent acute exacerbation with glucocorticoid treatment group was greater than that in other three groups (all P<0.05). There was no significant difference in CAT score between the non-frequent acute exacerbation with glucocorticoid treatment group and the non-frequent acute exacerbation with non-glucocorticoid treatment group (P>0.05).ConclusionsThe degree of airway inflammation is more obvious in patients with frequent acute exacerbation phenotype of COPD. FeNO value can reflect the level of airway inflammation in patients with frequent acute exacerbation of COPD and evaluate the response to glucocorticoid therapy.
Objective To observe the effects of astaxanthin (AST) on the airway inflammation and remodeling in the asthmatic rats. Methods Fifty male Wistar rats were randomly divided into five groups (n=10 for each group): saline-sensitized and-saline-challenged group (the control group), bronchial asthma group (the asthma group), bronchial asthma+astaxanthin 5 mg/kg gavage treatment group (the AST 5 mg/kg group), bronchial asthma+10 mg/kg gavage treatment group (the AST 10 mg/kg group), and bronchial asthma+50 mg/kg gavage treatment group (the AST 50 mg/kg group). The level of interleukin-5(IL-5), interleukin-13(IL-13), interferon-γ(IFN-γ), tansforming growth factor-β (TGF-β), malondialdehyde (MDA) and superoxide dismutase (SOD) in the bronchoalveolar lavage fluid (BALF) and the total IgE level in the serum were measured using enzyme linked immunosorbent assay (ELISA).The infiltration of airway inflammatory cells and the degree of airway epithelial cells detachment, the extent of goblet cell hyperplasia and the severity of subepithelial collagen deposition were evaluated on the hematoxylin eosin (HE), periodic acid Schiff (PAS) and Masson trichrome stained lung sections. reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression of mucin 5A and C (MUC5AC) messenger ribonucleic acid(mRNA) in lung tissue; Immunohistochemical staining was used to determine the expression of MUC5AC protein in the rat airway epithelium. Results The level of IL-5, IL-13, TGF-β, MDA and the total IgE in the serum respectively [(36.73±2.29), (53.99±2.70), (60.89±2.54)ng/mL,(18.65±0.76)umol/L, (54.50±2.91)ng/mL], the extent of inflammatory cells infiltration (46.24 ± 4.26), the extent of eosinophils infiltration (2.09± 0.13), the extent of epithelial cells detachment [(6.09±0.45)%], the extent of goblet cell hyperplasia [(13.65±1.90)%], the extent of subepithelial collagen deposition [(17.58±2.14)%], the MUC5AC mRNA expression level, and the lung tissue MUC5AC protein expression IOD value (187±12) in the asthma group were all higher than those in the control group (P<0.01 or P<0.001), the level of IFN-γ and SOD in the BALF[(26.38±1.70) ng/mL], [(16.37±1.22) U/L], was lower than that in the control group (P<0.001); The level of IL-5, IL-13, total IgE, TGF-β, MDA, the inflammatory cells infiltration in the airway epithelial, the degree of epithelial cell damage and detachment, the degree of goblet cell hyperplasia, the degree of subepithelial collagen deposition, the MUC5AC mRNA expression in lung tissue,and the MUC5AC protein expression in airway epithelial cells in the AST treated groups were all lower than those in the asthma group (P<0.05 or P<0.01 or P<0.001),the level of IFN-γ, SOD in the BALF was higher than that in the asthma group (P<0.05 or P<0.01). Conclusion Astaxanthin can inhibit airway inflammation, downregulate airway MUC5AC expression, inhibit goblet cell proliferation, and alleviate airway remodeling in rats with bronchial asthma.
ObjectiveTo monitor the airway inflammatory factors in exhaled breath condensate(EBC) of severe stable COPD patients during salmeterol/fluticasone (50/500μg, bid) treatment, and explore their clinical significance.
MethodsTwenty-four sever stable COPD patients and 18 healthy controls were included in the study. EBC was collected from COPD patients before treatment (day 0) and 14 days, 28 days, 90 days after treatment. Meanwhile lung function test and SGRQ score were measured.Concentrations of IL-6 and IL-10 were measured by liquid chip and 8-isoprostane by enzyme-linked immunosorbent assay.
ResultsLevels of 8-isoprostane, IL-6 and IL-10 in EBC were significantly higher in the sever stable COPD patients before treatment compared with the healthy controls. 8-isoprostane was decreased significantly at day 14 compared with day 0[(11.59±4.12) pg/mL vs. (14.17±4.66) pg/mL, P < 0.05], and kept in low level till day 90 (P > 0.05). IL-6 was significantly decreased at day 28 compared with day 0[(1.46±0.19) pg/mL vs. (1.59±0.19) pg/mL, P < 0.05], but did not change significantly till day 90. IL-10 was in low level but showed increase at day 90 compared with day 28[(1.72±0.19) pg/mL vs. (1.62±0.12) pg/mL, P < 0.05]. FEV1 and FEV1/FVC were improved and SGRQ score was decreased after 90 days treatment (P < 0.05). FEV1 was not correlated with 8-isoprostane, IL-6 or IL-10 level.
ConclusionsDynamic observation of EBC 8-isoprostane level in severe COPD patients can help in evaluating drug efficacy. IL-10 may play a role in airway anti-inflammation.
Objective To explore the effects of prolonged Aspergillus fumigatus spores inhalation on airway inflammation and remodeling in rats with chronic obstructive pulmonary disease(COPD).Methods Fifty Wistar rats were randomly divided into group A,B,C,D and E,(n=10 in each group) and group E was served as normal control.In group A,B,C and D,COPD models were established by intratracheal administration of lipopolysaccharide (LPS) combined with cigarette smoke exposure.The rats in group A,B and C were given intranasal inhalation of 1×106cfu spores,1×103cfu spores and 100 mL saline twice a week for consecutive 5 weeks,respectively,while the rats in group D were given no treatment.Bronchoalveolar lavage fluid(BALF) were collected for total and differential cell count,and interleukin-8(IL-8) and transforming growth factor-b(TGF-b) concentration measurement.The pathologic changes of lung tissue were observed by HE,PAS and Masson stainings.Results Pathological changes characteristic of COPD were found in group D.The total cell count,the percentage of neutrophile and lymphocyte in BALF in group A and B were higher than those in group C and D(all Plt;0.01).IL-8 and TGF-b in BALF in group A and B were higher than those in group C and D(all Plt;0.01).The pathologic score of airway inflammation in group A was higher than those in group B,C and D(all Plt;0.01):The thickness of airway wall(WAt/Pbm) and airway smooth muscles(WAm/Pbm),the collagen deposition in the total airway wall(WCt/Pbm) and in the outer airway wall(WCo/Pbm) and the percentage of goblet cells to epithelial cells in group A and B were higher than those in group C and D(all Plt;0.01).In group A and B,IL-8 was positively correlated with the percentage of neutrophile(r=0.856,Plt;0.01),the pathologic score of airway inflammation(r=0.884,Plt;0.01),and the percentage of goblet cells to epithelial cells (r=0.702,Plt;0.05),respectively.TGF-b was positively correlated with WAt/Pbm,WCt/Pbm,WCo/Pbm and the ratio of goblet cells to epithelial cells (r=0.706,Plt;0.05:r=0.802,Plt;0.01:r=0.876,Plt;0.01:r=0.713,Plt;0.05).Conclusion Prolonged inhalation of Aspergillus fumigatus spores can aggravate the airway inflammation and remodeling in rats with COPD.
Objective To investigate the expression of stromal cell derived factor-1 ( SDF-1) and the effects of budesonide suspension for inhalation ( Pulmicort Respules) in mice with asthma. Methods Thirty Kunming female mice were randomly divided into three groups, ie. a control group, an asthma group, and a pulmicort treatment group. The asthma group and the pulmicort treatment group were sensitized with ovalbumin ( OVA) by a combination of intraperitoneal injection and repeated OVA intranasal challenges to establish mouse asthma model. The pulmicort treatment group received 100μL pulmicort by intranasal administration before OVA challenge. The immunohistochemistry was used to estimate the expression of SDF-1 in lung tissues. HE staining and Wright-Giemsa staining method were used to assess inflammatory infiltration in the airway and bronchoalveolar lavage fluid ( BALF) respectively. Results The expression of SDF-1 in the asthma group increased significantly compared with the control group ( 0.48 ±0.03 vs. 0.21 ± 0.02, Plt;0.05) , and significantly decreased after the intervention with pulmicort ( 0.29 ±0.01 vs. 0.48 ± 0.03, Plt; 0.05 ) . Compared with control group, the infiltration of inflammatory cells in airway was significantly enhanced in the asthma group, and attenuated in the pulmicort treatment group. The total number of inflammatory cells and eosinophil, lymphocyte, neutrophil counts in BALF increased significantly in the asthma group compared with the control group, and decreased significantly after pulmicort intervention. Conclusion SDF-1 may play an important role in the recruitment of inflammatory cells in asthmatic airway and pulmicort may relieve airway inflammation by decreasing the expression of SDF-1.
0bjective To study the effect of bacterial infection on acute exacerbation of chronic obstructive pulmonary disease(AECOPD),and to compare the airway inflammation caused by different isolated bacteria.Methods A total of 159 sputum samples were collected from AECOPD patients diagnosed according to GOLD 2004 standard,in which conventional culture and identification of bacteria was conducted.The patients with purulent sputa were divided into different groups according to bacteria separated.Levels of IL-6.IL-8 and TNF-α in sputum supernatant were assayed and compared in different bacteria groups.the purulent sputum without isolated bacteria group(NG)and normal control group(NC). Results One hundred and twenty-nine strains of bacteria were isolated in 159 qualified sputa,including 26 strains of Klebsiella pneumoniae(KB),21 strains of Hemophilus influenza(Hi),17 strains of Pseudomonas aeruginosa(PA),37 strains of Haemophilus parainflb~enzae(HP)(mixed infection not included)and 28 strains of other bacteria.Among of all samples,20 were double infection of Haernophilus parainfluenzae with another bacterium.Ninety-seven purulent sputa were collected.According to bacteria isolated,these sputa were divided into five groups,named HP(24 samples),Hi(20 samples),PA(16 samples),KB(19 samples)and NG(18 samples).Contrast to NC,concentration of IL-8 and TNF-α rose in sputa from which PA,Hi,KB were isolated(Plt;0.05).The level increased much more in sputa from which PA and Hi were isolated compared with KB(Plt;0.05).Concentration of IL-6 rose in sputa of each group collected from AECOPD patients contrast to sputa collected from NC(Plt;0.05),without significant differences among all other group except for NC.Conclusions Bacterial infection plays an important role in AECOPD characterized with high level of inflammatory factors especially when PA,Hi,KB were infected bacteria.This study provides evidence for antibacterial therapy in AECOPD patients.
Objective To explore the role of nuclear factor kappa B(NF-KB)in the pathogenesis of chronic obstructive pulmonary disease(COPD)and the therapeutic efects of glucocorticoid.Methods Twenty-four Wistar rats were randomly divided into three groups,ie.normal control,COPD model and prednisone preventive treatment group.Rat COPD model Was established by exposing the rats to cigarette smoke daily.Prednisone Was given through stomachal injection on altemate days.After COPD model Was set up,bronchoalveolar lavage(BAL)Was performed.Total cell counts and neutrophil counts in BALF were examined.Pathological changes of lung tissue Was observe0 by hematoxylin-eosin staining.The morphological indices of pulmonary emphysema(MLI,MAN and PAA)Was measured by a computerizedimage analyzer and compared in three groups.NF-KB expression in lung tissues were detected by immunohistochemistry assay.Rults Emphysema Was confirmed by three morphological indices in COPD model group compared to those of normal control group[MLI:(97.97±11.10)×10-6m vs (47.23±2.80)×10-6 m,MAN:(95.98±l4.89)×106 /m vs (164.21±9.30)×106 /m ,PAA:(64 ±5.7)%vs (44±2.7)%,Plt;0.01].Total cell counts and neutrophil counts in BALF of COPD model group were significantly higher than those of control group[(5.76±0.29)×108/L vs (1.64±0.12)×108/L,(1.26±0.25)×108/L vs (0.099±0.065)×108/L,Plt;0.01].After the preventive treatment with prednisone,MLI,MAN and PAA were significantly changed[(57.66±4.62)×10-6mvs (97.97±11.10)×10-6m,(111.40±16.92)×106個/m2 vs (95.98±14.89)×106個/m2,Plt;0.01;(58±6.1)% vs (64±5.7)%,Plt;0.05],which indicated that airway inflammation and emphysematous injury in preventive treatm ent group were milder than those of COPD mode1.Total ceil counts and neutrophil countsin BALF were found in preventive treatment group as compared to those of COPD model[[(3.18±0.29)×108/L vs (5.76±0.29)×108/L,(0.57±0.12)×108/L vs (1.26±0.25)×108/L,Plt;0.01].The percentage of positive cells of NF-KB nuclear staining in bronchiolar epithelial ceils was significantly increased in the COPD group than that in the control group[(29.02±1.25)% vs (12.17±1.13)%,Plt;0.01],but was significantly decreased in the preventive treatment group[(19.23±1.18)%vs (29.02±1.25)%,Plt;0.01].Conclusions NF-KB may be responsible for the persistence and amplification of inflammation in COPD through neutrophil recruitment and activation.Prednisone may suppress airwayinflammation in COPD by inhibiting NF-KB.
Objective To investigate the effect of myeloid derived suppressor cells ( MDSCs) on airway inflammation of asthmatic mice. Methods Five male BALB/ c mice aged 6 weeks were used for preparing 4T1 tumor bearing mice. Thirty female BALB/ c mice aged six weeks were randomly divided into a normal control group, an athmatic model group, and a cell transplantation group. The MDSCs were separated frommyeloid tissue of tumor-bearing mice using amagnetic cell sorting systemand cultured in RPMI medium 1640 containing GM-CSF. The morphologic characteristics of these cells were observed under lightmicroscope and the phenotypic figures were analyzed with flow cytometry. The mice in the model group and the cell transplantation group were sensitized by ovalbumin and then stimulated with nebulized ovalbumin. The mice in the cell transplantation group were intravenously administered MDSCs which purified by magnetic cell sorting system at 10 days after sensitization. The airway inflammation was evaluated by HE staining. The total and differential cell counts in bronchoalveolar lavage fluid ( BALF) were measured.Results The neutrophil and eosinophil infiltration in pulmonary tissue was dramatically increased in the model group, but not observed in the normal control group and was much milder in the cell transplantation group. The total cell count, the eosinophil and lymphocyte counts in BALF of the model group and the cell transplantation group were significantly higher than those of the normal control group( P lt; 0. 05) , and the number of eosinophils in BALF of the cell transplantation group was decreased when compared with that of the model group( P lt;0. 05) . Conclusion MDSCs via intravenous infusion can effectively suppress airway inflammation in a mouse asthma model.
Objective To explore the effect of lower airway inflammation on the pathogenesis of upper airway cough syndrome( UACS) . Methods Ten cases of UACS and 10 cases of chronic rhinitis or sinusitis without cough were enrolled as group A and group B, respectively. And 10 healthy volunteers were included as controls( group C) . The cough threshold C2 and C5 to inhaled capsaicin, defined as the lowest concentration of capsaicin required to induce ≥2 and ≥5 coughs, was measured. The total and differential cell counts was determined in induced sputum, and the levels of histamine and prostaglandin E2 were analyzed in supernatant of sputum. Results Cough threshold was significantly lower in group A than group B [ C2: ( 0.65 ±0. 08) μmol / L vs ( 3.90 ±1. 37) μmol / L; C5: ( 1.59 ±0. 28) μmol / L vs ( 33.46 ±23. 71) μmol / L, P lt;0. 05] and comparable between group B and group C( P gt; 0. 05) . Group A, similar to group B( P gt; 0. 05 ) , contained more inflammatory cells, with decreased percentage of macrophages and increased percentage of neutrophils in induced sputum than group C( P lt; 0. 05) . Furthermore, the levels of histamine[ ( 9. 55 ±1. 89) ng/mL vs ( 2. 37 ±0. 25) ng/mL, P lt; 0. 05] and prostaglandin E2 [ ( 361. 71 ±39. 38) pg/mL vs ( 144. 34 ±15. 69) pg/mL, P lt; 0. 05] were higher in supernatant of induced sputum from group A than group B, while the latter was not different from group C( P gt; 0. 05) . Conclusion Increased cough sensitivity caused by airway inflammation may be important for the pathogenesis of UACS, and the activation of mast cells in mucosa of lower airway might be an important factor.