1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Alzheimer's disease" 21 results
        • Wavelet Entropy Analysis of Spontaneous EEG Signals in Alzheimer's Disease

          Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P<0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P<0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r=0.601-0.799, P<0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.

          Release date: Export PDF Favorites Scan
        • Research on the application of convolution neural network in the diagnosis of Alzheimer’s disease

          With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.

          Release date:2021-04-21 04:23 Export PDF Favorites Scan
        • Classification Studies in Patients with Alzheimer's Disease and Normal Control Group Based on Three-dimensional Texture Features of Hippocampus Magnetic Resonance Images

          This study aims to explore the diagnosis in patients with Alzheimer's disease (AD) based on magnetic resonance (MR) images, and to compare the differences of bilateral hippocampus in classification and recognition. MR images were obtained from 25 AD patients and 25 normal controls (NC) respectively. Three-dimensional texture features were extracted from bilateral hippocampus of each subject. The texture features that existed significant differences between AD and NC were used as the features in a classification procedure. Back propagation (BP) neural network model was built to classify AD patients from healthy controls. The classification accuracy of three methods, which were principal components analysis, linear discriminant analysis and non-linear discriminant analysis, was obtained and compared. The correlations between bilateral hippocampal texture parameters and Mini-Mental State Examination (MMSE) scores were calculated. The classification accuracy of nonlinear discriminant analysis with a neural network model was the highest, and the classification accuracy of right hippocampus was higher than that of the left. The bilateral hippocampal texture features were correlated to MMSE scores, and the relative of right hippocampus was higher than that of the left. The neural network model with three-dimensional texture features could recognize AD patients and NC, and right hippocampus might be more helpful to AD diagnosis.

          Release date:2016-12-19 11:20 Export PDF Favorites Scan
        • Correlation between Cadmium and Alzheimer's Disease:A Meta-analysis

          ObjectiveTo systematically review the relationship between Cadmium (Cd) level and Alzheimer's disease (AD). MethodWe searched PubMed, EMbase, CNKI, WanFang Data and CBM databases from inception to December 2014 to collect case-control studies about the relationship between Cd level and AD. Two reviewers screened literature, extracted data and evaluated the risk of bias of included studies, and then meta-analysis was performed by using RevMan 5.3 software. ResultsA total of 11 studies were included, among them 8 studies were included into final meta-analysis. Three studies including 154 patients and 141 controls reported the relationship of serum Cd concentrations and AD, and the result of meta-analysis showed that the higher serum Cd level was found in the AD group than the control group (SMD=0.36, 95%CI 0.12 to 0.59, P=0.003). Six studies including 358 patients and 423 controls reported the relationship of blood Cd concentrations and AD, and the result of meta-analysis showed that there was no significant difference of blood Cd levels between both groups (SMD=0.35, 95%CI -0.14 to 0.84, P=0.16). ConclusionSerum Cd concentrations may be associated with AD, but blood Cd concentrations not. Due to the limitation of quality and quantity of the included studies, more high quality studies are needed to verify the above conclusion.

          Release date: Export PDF Favorites Scan
        • Progress in the study of the imaging genomics of Alzheimer's disease

          With the exacerbation of aging population in China, the number of patients with Alzheimer's disease (AD) is increasing rapidly. AD is a chronic but irreversible neurodegenerative disease, which cannot be cured radically at present. In recent years, in order to intervene in the course of AD in advance, many researchers have explored how to detect AD as early as possible, which may be helpful for effective treatment of AD. Imaging genomics is a kind of diagnosis method developed in recent years, which combines the medical imaging and high-throughput genetic omics together. It studies changes in cognitive function in patients with AD by extracting effective information from high-throughput medical imaging data and genomic data, providing effective guidance for early detection and treatment of AD patients. In this paper, the association analysis of magnetic resonance image (MRI) with genetic variation are summarized, as well as the research progress on AD with this method. According to complexity, the objects in the association analysis are classified as candidate brain phenotype, candidate genetic variation, genome-wide genetic variation and whole brain voxel. Then we briefly describe the specific methods corresponding to phenotypic of the brain and genetic variation respectively. Finally, some unsolved problems such as phenotype selection and limited polymorphism of candidate genes are put forward.

          Release date:2019-02-18 03:16 Export PDF Favorites Scan
        • Bi-modality Image Classification Based on Independent Component Analysis

          We in the present research proposed a classification method that applied infomax independent component analysis (ICA) to respectively extract single modality features of structural magnetic resonance imaging (sMRI) and positron emission tomography (PET). And then we combined these two features by using a method of weight combination. We found that the present method was able to improve the accurate diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Compared AD to healthy controls (HC): the study achieved a classification accuracy of 93.75%, with a sensitivity of 100% and a specificity of 87.64%. Compared MCI to HC: classification accuracy was 89.35%, with a sensitivity of 81.85% and a specificity of 99.36%. The experimental results showed that the bi-modality method performed better than the individual modality in comparison to classification accuracy.

          Release date: Export PDF Favorites Scan
        • Accuracy comparison of artificial intelligence-assisted diagnosis systems based on 18F-FDG PET/CT and structural MRI in the diagnosis of Alzheimer's disease: a meta-analysis

          ObjectiveTo conduct a meta-analysis comparing the accuracy of artificial intelligence (AI)-assisted diagnostic systems based on 18F-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) and structural MRI (sMRI) in the diagnosis of Alzheimer's disease (AD). MethodsOriginal studies dedicated to the development or validation of AI-assisted diagnostic systems based on 18F-FDG PET/CT or sMRI for AD diagnosis were retrieved from the Web of Science, PubMed, and Embase databases. Studies meeting the inclusion criteria were collected, and the risk of bias and clinical applicability of the included studies were assessed using the PROBAST checklist. The pooled sensitivity, specificity, and area under the summary receiver operating characteristic (SROC) curve (AUC) were calculated using a bivariate random-effects model. ResultsTwenty-six studies met the inclusion criteria, yielding a total of 38 2×2 contingency tables related to diagnostic performance. Specifically, 24 contingency tables were based on 18F-FDG PET/CT to distinguish AD patients from normal cognitive (NC) controls, and 14 contingency tables were based on sMRI for the same purpose. The meta-analysis results showed that for 18F-FDG PET/CT, the AI-assisted diagnostic systems had a pooled sensitivity, specificity, and SROC-AUC of 89% (95%CI 88% to 91%), 93% (95%CI 91% to 94%), and 0.96 (95%CI 0.93 to 0.97), respectively. For sMRI, the AI-assisted diagnostic systems had a pooled sensitivity, specificity, and SROC-AUC of 88% (95%CI 85% to 90%), 90% (95%CI 87% to 92%), and 0.94 (95%CI 0.92 to 0.96), respectively. ConclusionAI-assisted diagnostic systems based on either 18F-FDG PET/CT or sMRI demonstrated similar performance in the diagnosis of AD, with both showing high accuracy.

          Release date:2024-12-27 01:56 Export PDF Favorites Scan
        • Correlation between ApoE Polymorphism and Sporadic Alzheimer's Disease in Chinese Population: A Meta-Analysis

          ObjectiveTo systematically review the correlation between apolipoprotein E (ApoE) polymorphism and sporadic Alzheimer's disease (SAD) in Chinese population. MethodsThe case-control studies about the relationship between ApoE polymorphism and SAD in Chinese population were electronically retrieved in PubMed, EMbase, CBM, The Cochrane Library (Issue 8, 2013), CNKI, VIP, and WanFang Data from the date of their establishment to August 2013. Literature screening according to the inclusion and exclusion criteria, data extraction and methodological quality assessment of the included stuides were completed by two reviewers independently. Meta-analysis was then conducted using Stata 12.0 software. ResultsA total of 50 case-control studies invovling 3 396 cases and 4 917 controls were finally included. The results of meta-analysis showed that, in Chinese, the risk of SAD was 2.89 times higher in population with allele ε4 than in population with allele ε3 (OR=2.89, 95%CI 2.61 to 3.19, P < 0.001); 7.24 times higher in those with ε4/ε4 genotype than in those with ε3/ε3 genotype (OR=7.24, 95%CI 5.11 to 10.24, P < 0.001); 2.90 times higher in ε3/ε4 genotype than in ε3/ε3 genotype (OR=2.90, 95%CI 2.56 to 3.29, P < 0.001); 2.11 times higher in ε2/ε4 genotype than in ε3/ε3 genotype (OR=2.11, 95%CI 1.64 to 2.72, P < 0.001); and no statistic significance was found in the risk of SAD compared ε2/ε3, ε2/ε2 genotypes and ε2 allele with ε3/ε3 genotype and ε3 allele. ConclusionFor Chinese population, ApoE allele ε4 is significantly associated with the onset of SAD, and genotype ε4/ε4 is a high risk factor of SAD. While allele ε2 is not associated with the onset of SAD. Since a great deal of current studies failed to conduct stratified analysis, it is suggested to further conduct relevant relevant studies according to clinical classification of SAD and patients' characteristics.

          Release date: Export PDF Favorites Scan
        • Clinical research progress on ocular fundus changes occur in Alzheimer’s disease

          Alzheimer's disease is a common neuro-degenerative disease. The clinical diagnosis mainly depends on the patient's complaint, the score of mini-mental state examination and Montreal cognitive assessment scale, and the comprehensive judgment of MRI and other imaging examinations. Retina is homologous to brain tissue, and their vascular systems have similar physiological characteristics to small blood vessels in the brain. Numerous studies found that the thickness of retinal nerve fiber layer, visual function, retinal blood vessels and retinal oxygen saturation were changed in AD patients to different degrees. To explore the formation mechanism and significance of ocular fundus changes in AD patients will be helpful to select specific, sensitive and simple methods for early observation and evaluation of AD.

          Release date:2019-05-17 04:15 Export PDF Favorites Scan
        • Early prognosis of Alzheimer's disease based on convolutional neural networks and ensemble learning

          Alzheimer's disease (AD) is a typical neurodegenerative disease, which is clinically manifested as amnesia, loss of language ability and self-care ability, and so on. So far, the cause of the disease has still been unclear and the course of the disease is irreversible, and there has been no cure for the disease yet. Hence, early prognosis of AD is important for the development of new drugs and measures to slow the progression of the disease. Mild cognitive impairment (MCI) is a state between AD and healthy controls (HC). Studies have shown that patients with MCI are more likely to develop AD than those without MCI. Therefore, accurate screening of MCI patients has become one of the research hotspots of early prognosis of AD. With the rapid development of neuroimaging techniques and deep learning, more and more researchers employ deep learning methods to analyze brain neuroimaging images, such as magnetic resonance imaging (MRI), for early prognosis of AD. Hence, in this paper, a three-dimensional multi-slice classifiers ensemble based on convolutional neural network (CNN) and ensemble learning for early prognosis of AD has been proposed. Compared with the CNN classification model based on a single slice, the proposed classifiers ensemble based on multiple two-dimensional slices from three dimensions could use more effective information contained in MRI to improve classification accuracy and stability in a parallel computing mode.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品