Objective Targeted adenoviral gene delivery from peripheral nerves was used to integrally analyse the characterization and time course of LacZ gene (AdLacZ) retrograde transfer to spinal cord and transgene product anterograde labeling ofperipheral nerve. Methods Recombinant replication-defective adenovirus containing AdLacZ was administrated to the cut proximal stumps of median and tibial nerves in Wister rats. Then the transected nerve was repaired with 10-0 nylon sutures. At different time point postinfection the spinal cords of C5 to T1 attached with DRGs and brachial plexuses, or L2 to L6 attached with DRGs and lumbosacralplexuses were removed. The removed spinal cord and DRGs were cut into 50 μm serialcoronal sections and processed for X-gal staining and immunohistochemical staining. The whole specimens of brachial or lumbosacral plexuses attaching with theirperipheral nerves were processed for X-gal staining. The number of X-gal stained neurons was counted and the initial detected time of retrograde labeling, peaktime and persisting period of gene expression in DRG sensory neurons, spinal cord motor neurons and peripheral nerves were studied. Results The gene transfer was specifically targeted to the particular segments of spinal cord andDRGs, and transgene expression was strictly unilaterally corresponding to the infected nerves. Within the same nerve models, the initial detected time of gene expression was earliest in DRG neurons, then in the motor neurons and latest in peripheral nerves. The persisting duration of β-gal staining was shortest in motor neurons, then in sensory neurons and longest in peripheral nerves. The initial detected time of β-gal staining in median nerve models was earlier in mediannerve models compared with that in the tibial nerve models. Although the initial detected time and the beginning of peak duration of β-gal staining were not same, the decreasing time of β-gal staining in motor and sensory neurons of thetwo nerve models were started at about the same day 8 post-infection. The labeled neurons were more in tibial nerve-models than that in median nerve models. Within the same models, the labeled sensory neurons of DRGs were morethan labeled motor neurons of ventral horn. The β-gal staining was tenser in median nerves than that in tibial nerves. However the persisting time of β-gal staining was longer in tibial nerve models. Conclusion The b gene expression in neurons and PNS renders this system particularly attractive for neuroanatomical tracing studies. Furthermore this gene delivery method allowing specific targeting of motor and sensory neurons without damaging the spinal cord might offer potentialities for the gene therapy of peripheral nerve injury.
Objective To construct small hairpin RNA (shRNA) expression plasmid targeting rat opticin gene.Methods Four pairs of opticin oligonucleotides were synthesized and inserted into the plasmid vector, resulting into four plasmids: shRNA-1, shRNA-2, shRNA-3 and shRNA-4. Then the four constructed shRNA expression vectors and empty vector were transfected into rat ciliary non-pigment epithelium (NPE) cells by lipofectmaine 2000. Nontransfected NPE cells were set as control group.The expression of opticin mRNA and protein were measured by Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot respectively.Results The opticin mRNA expression of the shRNA-1,shRNA-2,shRNA-3,shRNA-4 group were decreased compared with the control group (F=10.239,P=0.000);the inhibitory rate were 85.7%,62.87%,54.87% and 48.77% respectively.The opticin protein expression of the shRNA-1,shRNA-2,shRNA-3,shRNA-4 group were also decreased compared with the control group (F=17.870,P=0.000);the inhibitory rate were 78.7%,34.6%,31.1% and 16.8% respectively.Conclusions The shRNA-1 expression plasmid has most potent inhibitory effect on opticin expression in rat ciliary NPE cells.
Objective To investigate the effect of B7-1 and IL-12 gene expression on the immunogenicity of hepatocellular carcinoma (HCC) HepG2 cells. Methods Plasmids encoding B7-1 and IL-12 molecules were retrovirally introduced into human HCC cells,empty vector as control. PBLs were cocultured with HepG2/B7-1,HepG2/IL-12 and HepG2/neo cells. Three days later,PBLs were submitted to specific cytotoxicity test and nonspecific cytotoxicity test against K562 cells by MTT assay.Results HLA-Ⅰ molecules on PBLs were detected by FACS.HLA-Ⅰ molecules expressing on PBL cocultured with HepG2/B7-1,HepG2/IL-12 cells were enhanced by 16.95% and 14.71% than those of HepG2/neo group, respectively(P<0.05). Specific cytotoxicity against HepG2/B7-1 cells was 12.5% higher than that of against HepG2/neo cell,while no increase in that of against HepG2/IL-12 cells. Cytotoxicities against K562 cells in HepG2/B7-1,HepG2/IL-12 groups were 19.38% and 14.78% higher than those of HepG2/neo group, but no significant difference between the first two groups.Conclusion B7-1 and IL-12 gene transfer could remarkably promote immunogenicity of hepatocellular carcinoma cells and induce b specific and nonspecific immunity against hepatocellular carcinoma in vitro.
Objective To investigate the inhibitory effects of fms-like typrosine kinase receptor sFlt-1 on retinal neovascularization (RNV).Methods Recombinant lentivirus sFlt-1(2-3)and sFlt-1(2-4)expressing the sFlt-1 (2-3) and (2-4) immunoglobulinlike regions of sFlt-1 were constructed. 96 seven-day-old C57/6J mice were randomly divided into 4 groups with 24 mice in each group. Group 1: normal control; group 2: experimental control; group 3: sFlt-1(2-3); group 4: sFlt-1(2-4).The mice in group 2-4 were exposed to hyperoxia with (75plusmn;2)% O2 for 5 days and then returned to normoxia with 21% O2;the mice received an intravitreal injection with 1 mu;l virus of empty vector, sFlt-1(2-3),or sFlt-1(2-4),respectively. Five days later, all mice underwent perfusion fluorecein angiography and retinal wholemont was made to observe the changes of retinal vessels; retinal sections were stained by hematoxylin and eosin and RNV endothelium cell nucleus were counted; vascular endothelial growth factor(VEGF) and VEGF receptor-2 (KDR/Flk-1) protein were measured by Western blot.Results Seventeen days after birth, the retinal area of fluorescein leakage and RNV, RNV nucleus which breaking through inner limiting membrane in group 3 and 4 were smaller or less than that in group 2(P<0.01); while VEGF protein didnprime;t changed much (P>0.05)the expression of KDR/Flk-1 decreased significantly (P<0.01). Conclusion sFlt-1(2-3)and sFlt-1(2-4)can inhibit the formation of oxygen-induced RNV,the former virus has a better effect.
ObjectiveTo investigate the expression and mechanism of miR-1470 in plasma of diabetic retinopathy (DR) patients.MethodsThirty patients with DR (DR group), 30 patients with diabetes (DM group) and 30 normal healthy subjects (normal group) were enrolled in the study. Three groups of subjects were taken 5 ml of venous blood, and total plasma RNA was extracted and purified. The differentially expressed miRNAs in the plasma of DR patients were screened by gene chip, and the results of gene chip detection were verified by reverse transcription polymerase chain reaction (RT-PCR). Bioinformatics was used to predict potential target genes for miRNA regulation, and miR-1470 and its target gene epidermal growth factor receptor (EGFR) were screened. Human retinal microvascular endothelial cells (hREC) were divided into normal group (sugar concentration 5.5 mmol/L) and high glucose group (sugar concentration 25.0 mmol/L). hREC was transfected into miR-1470 mimics to establish a miR-1470 high expression cell model, which was divided into blank control group, high expression group and negative control group. The expression of miR-1470 was detected by RT-PCR. The expression of EGFR protein was detected by Western blot. The measurement data of the two groups were compared using the independent sample t test. The comparison of the measurement data between the two groups was analyzed by ANOVA. The comparison between the measurement data of the groups was compared by multiple comparisons.ResultsThe results of RT-PCR were consistent with those of the gene chip. The expression of miR-1470 in the plasma of the DR group, the DM group and the normal group was statistically significant (F=63.486, P=0.049). Compared with the DM group and the normal group, the expression of miR-1470 in the DR group was significantly decreased, and the difference was statistically significant (q=111.2, 73.9; P<0.05). The expression of miR-1470 in hREC in the high glucose group was significantly lower than that in the normal group (t=42.082, P=0.015). The expression of EGFR protein in hREC of high glucose group was significantly higher than that of normal group (t=?39.939, P=0.016). The expression of miR-1470 (F=637.069, P=0.000) and EGFR (F=122.908, P=0.000) protein expression in hREC of blank control group, negative control group and high expression group were statistically significant . Compared with the blank control group and the negative control group, the expression of miR-1470 in hREC of high expression group was significantly increased (q=329.7, 328.8; P<0.05), and the expression of EGFR protein was significantly decreased (q=242.5, 234.6; P<0.05). There was no significant difference in the expression of miR-1470 and EGFR protein in hREC between the negative control group and the blank control group (q=1.5, 7.9; P>0.05).ConclusionThe expression of miR-1470 in the plasma of patients with DR is significantly down-regulated, and the increase of EGFR expression may be related to it.
ObjectiveTo investigate the expression of miR-195 and the underlying molecular mechanisms of miR-195 regulating HMGB1 in diabetic retinopathy (DR).
MethodsExtract 5 ml venous blood from DR patients, diabetes mellitus (DM) patients and normal subjects, then extract and perificate plasma total RNA. MicroRNA array and real time polymerase chain reaction (RT-PCR) was used to screen out miRNAs which were expressed with significant differences in the serum of patients with DR. Bioinformatics was employed to predict the miR-195 related to high mobility group box 1 (HMGB1) regulation. Next, miR-195 was down-regulated or up-regulated in umbilical vein endothelial cells through transfection of miR-195 inhibitor and miR-29b mimics respectively.Then we analyzed expression of HMGB1 mRNA and protein by RT-PCR and Western blot.
ResultsMicroRNA array results showed the expression of miR-195 in DR group is decreased by 8.34 times and 11.47 times compared with DM group and the normal group. RT-PCR verification results conforms to the microRNA array results. Compared with the DM group (F=0.034, t=8.057) and the normal group (F=0.370, t=9.522), the expression of miR-195 in DR group were significantly reduced, the differences were statistically significant (P < 0.05). RT-PCR showed that the expression of HMGB1 mRNA was significantly decreased in up-regulation group, compared with blank (F=0.023, t=11.287) and negative control group (F=0.365, t=7.471), the difference was statistically significant (P < 0.05). The expression of HMGB1 mRNA was significantly increased in down-regulation group, compared with blank (F=0.053, t=10.871) and negative control group (F=0.492, t=6.883), the difference was statistically significant (P < 0.05). Western blot showed that the expression of HMGB1 protein was significantly decreased in up-regulation group, compared with blank (F=0.021, t=8.820) and negative control group (F=0.039, t=7.401), the difference was statistically significant (P < 0.05); and significantly increased in down-regulation group, compared with blank (F=0.186, t=10.092) and negative control group (F=0.017, t=12.923), the difference was statistically significant (P < 0.05).
ConclusionMiR-195 can inhibit the expression of HMGB1, reduce the inflammation and angiogenesis, thereby delaying or inhibiting the occurrence and development of DR.
Objective To compare the transfection effects on soluble fms-like tyrosine kinase receptor-1 (sFlt-1) gene (2-4 transcellular region) mediated by carboxymethylated dextran coated nanoparticle and lipofectamineTM2000.Methods The plasmid pcDNA3.1-EGFP/sFlt-1(2-4) was constructed and assessed by enzyme cut, electrophoresis, and genetic sequencing. Three groups were divided: nanoparticle group, lipofectamine group, and non-transfected group. Twenty-four and 48 hours after the transfection, the distribution of cellular green fluorescence was oberved under the inverted phase contrast fluorescence microscope; the expression rate of green fluorescence was measured by flow cytometry; the expression of sFlt-1(2-4)mRNA and the protein was detected by reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blot; the growth of the cells was observed by methyl thiazolyl tetrazolium (MTT) colorimetry and the relative growth rate (RGR) of the cells in each group was calculated; the cellular apoptosis in each group was detected by Hoechst staining.Results The sequence of sFlt-1(2-4) gene was equal to 915 base pair (bp).The transfection rate was 45% in nanoparticle group and 21% in lipofectamine group; the difference between the two groups was significant (t=2.541,Plt;0.05). Forty-eight hours after the transfection, the expression of sFlt-1(2-4)mRNA and protein was obviously higher in nanoparticle group than that in lipofectamine group (t=2.454,2.398;Plt;0.05) . Twenty-four and 48 hours after the transfection,the difference of RGR of the cells between nanoparticle and non-transfected group was not significant(t=1.436,Pgt;0.05); the RGR in lipofectamine group differed much from that in non-transfected and nanoparticle group (t=2.412,2.545; Plt;0.05) ; the difference of cellular apoptosis was not significant between nanoparticle and nontransfected group (t=1.436,Pgt;0.05), but significant between nanoparticle and lipofectamine group (t=2.236,Plt;0.05). Conclusion The transfection rate of sFlt-1(2-4) mediated by carboxymethylated dextran coated nanoparticle was higher than that mediated by lipofectamineTM2000.
ObjectiveTo observe the effect of adenovirus-mediated Tum5 (rAd-Tum5) inhibiting retinal neovascularization (RNV) of oxygen-induced retinopathy (OIR) mouse model.
MethodsThe OIR model was induced in 96 C57BL/6J mice aged of 7 days according to the literature. These mice were divided randomly into control group, OIR group, OIR rAd-green fluorescent grotein (GFP) group and OIR rAd-Tum5 group, each group had 24 mice. The rAd-GFP and rAd-Tum5 were injected into the vitreous cavity of mice aged of 12 days in OIR rAd-GFP group and OIR rAd-Tum5 group, respectively. Meanwhile, OIR group and the control group received the injection of physiological saline solution of same volume. The relatively non-perfusion area was evaluated by fluorescence angiography, and the number of pre-retinal nucleus breaking through internal limiting membranes was observed by hematoxylin-eosin staining. The expression of vascular endothelial growth factor (VEGF) was estimated by immunofluorescent (IF) and Western blot.
ResultsThe retinal avascular areas of all groups were significantly different (F=61.224, P<0.01). The retinal avascular area of the rAd-Tum5 group was decreased significantly comparing with that in the OIR group and rAd-GFP group (P<0.01). However, there are no significant differences between the OIR group and rAd-GFP group (P=0.827). The number of pre-retinal nucleus breaking through ILM of all groups was significantly different (F=635.738, P<0.01), but no significantly difference was observed in OIR group and rAd-GFP group (P=0.261). Significant differences could also been seen between OIR rAd-Tum5 group and OIR group as well as OIR rAd-Tum5 group and OIR rAd-GFP group (P<0.01). The results of IF and Western blot indicated that expression of VEGF in the OIR group and rAd-GFP group was obviously up-regulated, compared with that in the control group. But the expression was declined in the rAd-Tum5 group compared with that in the OIR group and rAd-GFP group.
ConclusionTum-5 peptide can efficiently prevent RNV probably by down-regulating expression of VEGF.
Abstract: Objective To assess the feasibility of transferring major histocompatibility complex (MHC) gene into the thymus to mitigate xenograft rejection. Methods By molecular cloning technique, we extracted and proliferated the-H-2K d gene from donor mice (MHC class Ⅰ gene of Balb/c mice) and constructed the expression vector plasmid of pCI-H-2K d. Twenty SD rats were selected as receptors, and by using random number table, they were divided into the experimental group and the control group with equal number of rats in each group. By ultrasoundguided puncture and lipofection method, the pCI-H-2Kd was injected into thymus of SD rats in the experimental group and meanwhile, empty vector plasmid of pCIneo was injected into thymus of SD rats in the control group. Subsequently, we transplanted the donor mice myocardium xenografts into the receptor rats, and observed the xenograft rejection in both the two groups. Results The survival time of the xenotransplanted myocardium in the experimental group was significantly longer than that in the control group (14.61±2.98 d vs. 6.40±1.58 d, t=-7.619,Plt;0.05). Microtome section of transplanted myocardium in the control group showed a relatively large amount of lymphocyte infiltration and necrosis occurred to most part of the transplanted myocardium, while microtome section of experiment group showed no lymphocyte infiltration and most of the cells of the transplanted myocardium were still alive. After mixed lymphocyte culture, the reaction of receptors to donor cells in the experiment group was obviously lower than that in the control group (t=4.758, P=0.000).After the count by flow cytometer, the xenoMHC molecules were expressed in the receptors’ thymus with a transfection efficiency of 60.7%. Conclusion Our findings suggest that xenograft rejection can be mitigated substantially by donor’s MHC gene transferring into receptor’s thymus. This may provide theoretical and experimental evidence for inducing xenotransplantation tolerance.
Objective To investigate the enhancing effect of ultrasound microbubbles on transfection of recombinant adenoassociated virus (rAAV) mediated green fluorecent protein (EGFP) gene into retinal ganglion cells (RGC) in vivo.Methods A total of 40 adult Sprague-Dawley (SD) rats were divided into four groups randomly (group A,B,C,D) with 10 rats in each. Group A was the normal control, in which the rats underwent intravitreal injection with 5 mu;l phosphate buffered solution. The rats in group B underwent intravitreal injection with 5 mu;l recombinant adenoassociated virus encoding EGFP gene (rAAV2-EGFP). The rats in group C underwent ultrasound irradiation on eyes right after intravitreal injection with 5 mu;l rAAV2-EGFP; The ultrasound irradiation was performed on the rats in group D right after intravitreal injection with the mixture solution of microbubbles and rAAV2-EGFP ultrasound. After 21 days, RGC were labeled retogradely with fluogold. Seven days after labeling, the retinal flatmounts and frozen sections were made from five rats in each group. Expression of EGFP reporter gene was observed by laser scanning confocal microscope and evaluated via average optical intensity (AOD) and RGC transfection rate. Labeled RGC were counted to evaluate the adverse effects.Results Green fluorescence can be observed exactly in labeled RGC in B,C,and D groups. The AOD and transfection rate in group D was (95.02plusmn;7.25)% and(20.10plusmn;0.74)% , respectively; which were higher than those in group B and C (F=25.970,25.799;P<0.01). The difference of the number of RGC among the four groups was not significant(F=0.877,P>0.05). Conclusion Under the condition of low frequency and with certain energy, ultrasoundmediated microbubble destruction can effectively and safely enhance rAAV delivery to RGC in rats.