1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Mesenchymal stem cell" 83 results
        • Human umbilical cord mesenchymal stem cell exosomes pretreated with atorvastatin alleviate high glucose-induced injury of human retinal vascular endothelial cells through the protein kinase B/ endothelial nitric oxide synthase pathway

          ObjectiveTo investigate whether exosomes derived from atorvastatin (ATV)-pretreated human umbilical cord mesenchymal stem cells (ATV-MSC-EXO) alleviate high glucose-induced injury in human retinal vascular endothelial cells (HREC) via the protein kinase B (AKT)/endothelial nitric oxide synthase (eNOS) signaling pathway. MethodsThe optimal pretreatment concentration of ATV was determined using the cell counting Kit-8 (CCK-8) assay. Exosomes derived from mesenchymal stem cells (MSC-EXO) and ATV-pretreated MSC (ATV-MSC-EXO) were isolated and extracted, and their morphology and surface markers were characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting (WB). The uptake capacity of exosomes by human retinal vascular endothelial cells (HREC) was evaluated using a fluorescence labeling assay. In vitro cultured HREC were divided into the following groups: normal control group (NC group), high glucose group (HG group), high glucose+MSC-EXO group (MSC-EXO group), high glucose+ATV-MSC-EXO group (ATV-MSC-EXO group), high glucose+ATV-MSC-EXO+AKT inhibitor group (ATV-MSC-EXO-MK-2206-2HCL group), and high glucose+ATV-MSC-EXO+eNOS inhibitor group (ATV-MSC-EXO-L-NAME group). Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The protein expression levels of B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated protein (Bax), and Caspase-3 were measured by WB. In addition, the regulatory effects of ATV-MSC-EXO on the AKT/eNOS signaling pathway and its downstream functional molecules were analyzed by detecting the phosphorylation levels of AKT (P-AKT/AKT) and eNOS (P-eNOS/eNOS) via WB, the mRNA expression levels of AKT and eNOS by quantitative real-time polymerase chain reaction, and the concentrations of nitric oxide (NO) and endothelin-1 (ET-1) using commercial NO and ET-1 assay kits. ResultsThe optimal pretreatment concentration of ATV was 1 μmol/L. ATV-MSC-EXO exhibited similar morphology and particle size to MSC-EXO and were efficiently taken up by HREC. Under high glucose conditions, ATV-MSC-EXO significantly enhanced the viability of HREC (F=83.24, P<0.000 1) and inhibited apoptosis (F=77.39, P<0.000 1). WB analysis further confirmed that ATV-MSC-EXO upregulated the expression of the anti-apoptotic protein Bcl-2 (F=53.17), while downregulating the pro-apoptotic proteins Bax (F=36.49) and Caspase-3 (F=60.75) (P<0.001). In addition, ATV-MSC-EXO markedly increased the protein levels of P-AKT/AKT (F=107.60) and P-eNOS/eNOS (F=38.59), as well as the relative mRNA expression of AKT, eNOS (F=203.60, 315.00; P<0.000 1). Furthermore, ATV-MSC-EXO promoted NO production (F=407.40) and suppressed the relative expression of ET-1 (F=49.76) (P<0.000 1). ConclusionATV-MSC-EXO enhances the viability and inhibits apoptosis of HREC under high glucose conditions by activating the AKT/eNOS signaling pathway.

          Release date:2025-09-17 08:53 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF CONSTRUCTION OF TISSUE ENGINEERED OSTEOCHONDRAL COMPOSITES

          Objective?To review the recent progress of the researches in construction of tissue engineered osteochondral composites, and to discuss the challenges in construction of tissue engineered osteochondral composites.?Methods?The recent literature on the construction of tissue engineered osteochondral composites was extensively reviewed and analyzed.?Results?The studies on the construction of tissue engineered osteochondral composites are relatively more in vivo, the current focus is that different tissues derived mesenchymal stem cells are widely used to be seed cells; single-phase scaffold has been limited, studies on biphase scaffold and triphase scaffold are new trends; the design and performance of bioreactor need to be further optimized in the future.?Conclusion?The construction of tissue engineered osteochondral composites will be a promising method for the treatment of cartilage defects.

          Release date:2016-08-31 05:45 Export PDF Favorites Scan
        • EXPERIMENTAL INVESTIGATION ON CHARACTERISTICS OF C3H1OT1/2 CELL INDUCED DIFFERENTIATIONINTO NEURONLIKE CELLS

          Objective To explore the method that can inducethe mesenchymal stem cells (MSCs) to differentiate into the neuronlike cells in vitro.Methods The neuron-like cells were isolated froman SD rat (age, 3 months; weight, 200 g). They underwent a primary culture; theinduced liquid supernatant was collected, and was identified by the cell immunohistochemistry. The C3H1OT1/2 cells were cultured, as an MSCs model, and they were induced into differentiation by β-mercaptoethanol (Group A) and by the liquid supernatant of the neuron-like primary cells (Group B), respectively. The cells were cultured without any induction were used as a control (Group C). Immunohistochemistrywas used to identify the type of the cells. Results The result of the immunochemistry showed that the cells undergoing the primary culture expressed the neurofilament protein (NF) and the neuronspecific enolase (NSE), and they were neuron-like cells. β-mercaptoethanol could induce the C3H1OT1/2 cells toexpress NF and NSE at 2 h, and the expression intensity increased at 5 h. The liquid supernatant of the primarily-cultured neuron-like cells could induce theC3H1OT1/2 cells to express NF and NSE at 1 d, but the expression intensity induced by the liquid supernatant was weaker than that induced by β-mercaptoethanol. The positivity rate and the intensity expression of NSE were higher than those of NF. Conclusion MSCs can differentiate into the neuron-like cells by β-mercaptoethanol and the microenvironment humoral factor, which can pave the way for a further study of the differentiation of MSCs and the effectof the differentiation on the brain trauma repair. 

          Release date:2016-09-01 09:23 Export PDF Favorites Scan
        • Mesenchymal stem cells derived exosomes:an alternative drug carrier for eye disease

          Mesenchymal stem cells (MSCs) are considered as an ideal treatment for multiple diseases including ocular disease. Recent studies have demonstrated that MSCs-derived exosomes have similar functions with MSCs. Exosomes are nanovesicles surrounded by a phospholipid layer that shuttle active cargo between different cells. They are capable of passing the biological barrier and have potentials to be utilized as natural carrier for the ocular drug delivery.

          Release date:2019-03-18 02:49 Export PDF Favorites Scan
        • The influence of human umbilical cord mesenchymal stem cells transplanted into the tail vein of diabetic rats on apoptosis of retinal neurons and the retinal expression of glial fibrillary acidic protein

          Objective To observe the influence of human umbilical cord mesenchymal stem cells (hUCMSC) transplanted into the tail vein of diabetic rats on apoptosis of retinal neurons and the retinal expression level of glial fibrillary acidic protein (GFAP). Methods Seventy clean male Sprague-Dawley rats were randomly divided into the normal control group (group A), diabetes mellitus (DM) only group (group B), DM + balanced salt solution (BSS) group (group C), DM + hUCMSC group (group D), with 10 rats in each group. DM rats were induced by intraperitoneal injection of streptozotocin. Apoptosis of retinal cells was assayed by dUTP nick end labeling. Immunohistochemistry and Western blot was performed to detect the retinal expressions of GFAP in rats. Results Compared with group A, large numbers of apoptotic cells could be found in the retinal ganglion cell layer (GCL) and inner nuclear layer (INL) of group B and group C, however the apoptotic cells in group D were significantly reduced than group B and C. The expression of GFAP was mainly located in the retinal GCL and retinal nerve fibre layer (RNFL) in group A, throughout the inner plexiform layer (IPL) in group B and C, only distributed in RNFL and GCL in group D. It was obvious that the expression of GFAP in group B and C was higher than group A. Compared with group B and C, the expression of GFAP in group D was significantly reduced. The difference of GFAP expression among the 4 groups was significant (F=79.635, P<0.05). Conclusion hUCMSC could inhibit the apoptosis of retinal cells and activation of glial cells in early DM rats.

          Release date:2018-03-16 02:36 Export PDF Favorites Scan
        • PROGRESS OF MESENCHYMAL STEM CELL-DERIVED Exosomes IN TISSUE REPAIR

          ObjectiveTo comprehensively analyze the recent advancements in the field of mesenchymal stem cells (MSCs) derived exosomes (MSCs-exosomes) in tissue repair. MethodsThe literature about MSCs-exosomes in tissue repair was reviewed and analyzed. ResultsExosomes are biologically active microvesicles released from MSCs which are loaded with functional proteins, RNA, and microRNA. Exosomes can inhibit apoptosis, stimulate proliferation, alter cell phenotype in tissue repair of several diseases through cell-to-cell communication. ConclusionMSCs-exosomes is a novel source for the treatment of tissue repair. Further research of MSCs-exosomes biofunction, paracellular transport, and treatment mechanism will help the transform to clinical application.

          Release date:2016-08-25 10:18 Export PDF Favorites Scan
        • Bone marrow mesenchymal stem cells prevent pulmonary fibrosis through inhibiting myeloid-derived suppressor cells

          ObjectiveTo investigate the role of myeloid-derived suppressor cell (MDSC) in bleomycin (BLM)-induced pulmonary fibrosis and the possible mechanism of bone marrow mesenchymal stem cell (MSC) in therapy of BLM-induced pulmonary fibrosis.MethodsBone marrow mesenchymal stem cells (MSC) were harvested from 6-week old male BALB/c mice. One hundred and four female BALB/c mice were randomly divided into 3 groups. Mice in control (n=32) and BLM group were instilled with normal saline (NS) or BLM via trachea and NS were injected via tail vein on the 1st, 2nd and 3rd day after NS administration. Mice in MSC group (n=40) were instilled with BLM via trachea and MSC (total cell number=1.5×106) were injected via tail vein. On the 1st, 3rd, 5th, 8th, 11th, 14th, 18th, 21st, 25th and 32nd day after BLM administration, the percentage of Gr-1+CD11b+ cells in peripheral blood mononuclear cell (PBMC) was detected by flow cytometry. Eight mice from each group were killed on the 3rd, 8th, 18th and 32nd day after BLM administration, the percentage of Gr-1+CD11b+ cells in the lung tissue was detected by flow cytometry. Meanwhile, the lung tissue specimens were stained with Masson. The sry gene of Y chromosome was detected by polymerase chain reaction (PCR).ResultsCompared with BLM group, MSC transplantation significantly reduced pulmonary inflammation in MSC group [(1.32±0.25) vs. (2.53±0.56); and (1.06±0.42) vs. (2.27±0.82), respectively, P<0.01)]. Likewise, MSC transplantation significantly reduced pulmonary fibrosis and deposition of collagen as compared with BLM group [(1.02±0.44) vs. (1.81±0.74), and (1.51±0.73) vs. (2.72±0.54), respectively, P<0.05)]. The percentage of Gr-1+CD11b+ cells in the BLM group was significantly increased as compared with control group. Compared with BLM group, MSC transplantation significantly reduced Gr-1+CD11b+ cells in MSC group (P<0.05). The sry gene (201 bp) was detected in the lungs of female mice within 96 hours after MSC administration.ConclusionsMDSC participates in the procedure of BLM-induced pulmonary fibrosis. Syngeneic MSC inhibits the generation of MDSC and further suppresses BLM-induced pulmonary fibrosis.

          Release date:2021-06-30 03:37 Export PDF Favorites Scan
        • APPLICATION OF ADENOVIRUS BONE MORPHOGENETIC PROTEIN 2 GENE TRANSFER INDUCING MESENCHYMAL STEM CELLS WITH FIBRIN GEL IN TREATING RABBIT CARTILAGE DEFECT

          Objective To study the effect of adenovirus bone morphogenetic protein 2 gene(Ad-BMP-2) transfer inducing mesenchymal stem cells (MSCs) compounded with fibrin gel on repair of rabbit cartilage defect. Methods ①BMP-2 and collagen type Ⅱ in MSCs transferred by Ad-BMP-2 were examined by RT-PCR, aniline dyeing and immunohistochemical analysis in vitro. ②MSCs were cultured in fibrin gel for 9 days, and were examined with electron microscope. ③Fortytwo rabbits suffering from cartilage defect were divided into 3 groups:the defects were treated with Ad-BMP-2 transfer inducing MSCs compounded with fibrin in group A, with MSCs compounded with fibringel in group B and with no implants in group C as control. HE and aniline dyeing, immunohistochemical analysis and biomechanics study were carried out in the 4th, 8thand 12th weeks. Results ①The positive results were observed for BMP-2 and collagen type Ⅱ with RT-PCR on the 3rd day and 5th day respectively, being statisticallysignificant difference when compared with control group(P<0.05). ②Ad-BMP-2 transfer inducing MSCs cultured in fibrin gel were positively stained by aniline dyeing and immunohistochemstry. ③The therapy effect of group A was better than that of the other two groups in histology, biochemistry and biomechanics, and the biomechanic and histological features of repaired cartilage were similar to those of the natural cartilage. Conclusion Ad-BMP-2 can induce the expressionof collagen type Ⅱ and mucopolysaccharide in MSCs by secreting BMP-2, and can reconstruct articular cartilage defects better when compounded with fibrin gel.

          Release date:2016-09-01 09:28 Export PDF Favorites Scan
        • Role of stromal cell derived factor-1/CXC chemokine receptor 4 pathway in mesenchymal stem cells therapies in the management of diabetic retinopathy

          Mesenchymal stem cells (MSC) are considered to have important value in the treatment of various diseases because of their low immunogenicity, transferability, and strong tissue repair capacity. Stromal cell derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) pathway plays an important role in migration of MSC. The induction of homing of MSC to retina by regulating SDF-1/CXCR4 may exert the curative effect on diabetic retinopathy to greatest exent.

          Release date:2016-11-25 01:11 Export PDF Favorites Scan
        • Progress of mesenchymal stem cells derived exosomes in wound repair

          ObjectiveTo summarize the research progress of mesenchymal stem cells derived exosomes (MSCs-EXOs) in wound repair in recent years.MethodsThe literature about the role of MSCs-EXOs in wound repair at home and abroad was extensively consulted. The mechanism of MSCs-EXOs in wound repair and its clinical application prospects were summarized and analyzed.ResultsMSCs-EXOs can inhibit early inflammatory reaction, promote angiogenesis, proliferation, and migration of epithelial cells, regulate collagen synthesis, and inhibit scar proliferation in the later stage of wound healing. Compared with MSCs, MSCs-EXOs have many advantages, such as high stability, easy storage, non-tumorigenicity, no proliferation, easy quantitative use, and so on. It has broad clinical application prospects.ConclusionMSCs-EXOs can promote wound repair and hopefully develop into a clinical product to promote the repair of acute or chronic wounds.

          Release date:2019-05-06 04:48 Export PDF Favorites Scan
        9 pages Previous 1 2 3 ... 9 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品