The rehabilitation of motor dysfunction following stroke remains a major clinical challenge, underscoring the urgent need to develop novel therapeutic strategies to improve functional recovery in patients. Brain-computer interface (BCI) technology has emerged as a cutting-edge approach in neurorehabilitation, demonstrating significant potential for motor function restoration. Transcranial electrical stimulation (tES), a non-invasive neuromodulation technique, can promote neuroplasticity by regulating cortical excitability. In recent years, studies have begun to explore the combination of BCI with tES to synergistically enhance neural remodeling within the central nervous system. This integrated multi-technology strategy is increasingly becoming a key focus in the field of neurorehabilitation. This review systematically summarized recent advances in tES-BCI integrated systems for neurorehabilitation, with a particular emphasis on widely adopted BCI paradigms and tES parameter configurations and stimulation modalities. Based on a comprehensive synthesis of existing evidence, this review summarizes the efficacy of this combined intervention strategy in rehabilitating upper and lower limb motor functions following stroke, highlights the methodological limitations and clinical translation challenges present in current research, and aims to provide insights for mechanistic exploration, system optimization, and clinical translation of integrated BCI-tES technology.