Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Early diagnosis and effective management are important to reduce atrial fibrillation‐related adverse events. Photoplethysmography (PPG) is often used to assist wearables for continuous electrocardiograph monitoring, which shows its unique value. The development of PPG has provided an innovative solution to AF management. Serial studies of mobile health technology for improving screening and optimized integrated care in atrial fibrillation have explored the application of PPG in screening, diagnosing, early warning, and integrated management in patients with AF. This review summarizes the latest progress of PPG analysis based on artificial intelligence technology and mobile health in AF field in recent years, as well as the limitations of current research and the focus of future research.
Rapid and accurate identification and effective non-drug intervention are the worldwide challenges in the field of depression. Electroencephalogram (EEG) signals contain rich quantitative markers of depression, but whole-brain EEG signals acquisition process is too complicated to be applied on a large-scale population. Based on the wearable frontal lobe EEG monitoring device developed by the authors’ laboratory, this study discussed the application of wearable EEG signal in depression recognition and intervention. The technical principle of wearable EEG signals monitoring device and the commonly used wearable EEG devices were introduced. Key technologies for wearable EEG signals-based depression recognition and the existing technical limitations were reviewed and discussed. Finally, a closed-loop brain-computer music interface system for personalized depression intervention was proposed, and the technical challenges were further discussed. This review paper may contribute to the transformation of relevant theories and technologies from basic research to application, and further advance the process of depression screening and personalized intervention.
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.
In order to improve the wearing comfort and bearing effectiveness of the exoskeleton, based on the prototype and working mechanism analysis of a relaxation wearable system for knee exoskeleton robot, the static optimization synthesis and its method are studied. Firstly, based on the construction of the virtual prototype model of the system, a comprehensive wearable comfort evaluation index considering the factors such as stress, deformation and the proportion of stress nodes was constructed. Secondly, based on the static simulation and evaluation index of system virtual prototype, multi-objective genetic optimization and local optimization synthesis of armor layer topology were carried out. Finally, the model reconstruction simulation data confirmed that the system had good wearing comfort. Our study provides a theoretical basis for the bearing performance and prototype construction of the subsequent wearable system.
The goal of this paper is to solve the problems of large volume, slow dynamic response and poor intelligent controllability of traditional gait rehabilitation training equipment by using the characteristic that the shear yield strength of magnetorheological fluid changes with the applied magnetic field strength. Based on the extended Bingham model, the main structural parameters of the magnetorheological fluid damper and its output force were simulated and optimized by using scientific computing software, and the three-dimensional modeling of the damper was carried out after the size was determined. On this basis and according to the design and use requirements of the damper, the finite element analysis software was used for force analysis, strength check and topology optimization of the main force components. Finally, a micro magnetorheological fluid damper suitable for wearable rehabilitation training system was designed, which has reference value for the design of lightweight, portable and intelligent rehabilitation training equipment.
Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system’s performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.
ObjectiveWearable devices refer to a class of monitoring devices that can be tightly integrated with the human body and are designed to continuously monitor individual's activity without impeding or restricting the user's normal activities in the process. With the rapid advancement of chips, sensors, and artificial intelligence technologies, such devices have been widely used for patients with cardiovascular diseases who require continuous health monitoring. These patients require continuous monitoring of a number of physiological indicators to assess disease progression, treatment efficacy, and recovery in the early stages of the disease, during the treatment, and in the recovery period. Traditional monitoring methods require patients to see a doctor on a regular basis with the help of fixed devices and analysis by doctors, which not only increases the financial burden of patients, but also consumes medical resources and time. However, wearable devices can collect data in real time and transmit it directly to doctors via the network, thus providing an efficient and cost-effective monitoring solution for patients. In this paper, we will review the applications, advantages and challenges of wearable devices in the treatment of cardiovascular diseases, as well as the outlook for their future applications.
Flexible conductive fibers have been widely applied in wearable flexible sensing. However, exposed wearable flexible sensors based on liquid metal (LM) are prone to abrasion and significant conductivity degradation. This study presented a high-sensitivity LM conductive fiber with integration of strain sensing, electrical heating, and thermochromic capabilities, which was fabricated by coating eutectic gallium-indium (EGaIn) onto spandex fibers modified with waterborne polyurethane (WPU), followed by thermal curing to form a protective polyurethane sheath. This fiber, designated as Spandex/WPU/EGaIn/Polyurethane (SWEP), exhibits a four-layer coaxial structure: spandex core, WPU modification layer, LM conductive layer, and polyurethane protective sheath. The SWEP fiber had a diameter of (458.3 ± 10.4) μm, linear density of (2.37 ± 0.15) g/m, and uniform EGaIn coating. The fiber had excellent conductivity with an average value of (3 716.9 ± 594.2) S/m. The strain sensing performance was particularly noteworthy. A 5 cm × 5 cm woven fabric was fabricated using polyester warp yarns and SWEP weft yarns. The fabric exhibited satisfactory moisture permeability [(536.06 ± 33.15) g/(m2·h)] and maintained stable thermochromic performance after repeated heating cycles. This advanced conductive fiber development is expected to significantly promote LM applications in wearable electronics and smart textile systems.
Cartilage surface fibrosis is an early sign of osteoarthritis and cartilage surface damage is closely related to load. The purpose of this study was to study the relationship between cartilage surface roughness and load. By applying impact, compression and fatigue loads on fresh porcine articular cartilage, the rough value of cartilage surface was measured at an interval of 10 min each time and the change rule of roughness before and after loading was obtained. It was found that the load increased the roughness of cartilage surface and the increased value was related to the load size. The time of roughness returning to the initial condition was related to the load type and the load size. The impact load had the greatest influence on the roughness of cartilage surface, followed by the severe fatigue load, compression load and mild fatigue load. This article provides reference data for revealing the pathogenesis of early osteoarthritis and preventing and treating articular cartilage diseases.