1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "adaptive" 34 results
        • Enhancement and Assessment of the Fundus Image

          A new enhancement method is proposed based on the characteristics of fundus images in this paper. Firstly, top-hat transform is utilized to weaken the background. Secondly, contrast limited adaptive histogram equalization (CLAHE) is performed to improve the uneven illumination. Finally, two-dimensional matched filters are designed to further enhance the contrast between blood vessels and background. The algorithm was tested in DIARETDB0 databases and showed good applicability for both normal and pathological fundus images. A new no-reference image quality assessment method was used to evaluate the enhancement methods objectively. The results demonstrated that the proposed method could effectively weaken the background, increase contrast, enhance details in the fundus images and improve the image quality greatly.

          Release date: Export PDF Favorites Scan
        • Application exploration and thinking of master protocol with adaptive design in traditional Chinese medicine clinical research

          Master protocol with adaptive design is a new complex innovative trial design that combines an adaptive treatment strategy and master protocol. It is more flexible and adjustable. In the complex clinical trial environment, the dynamics emphasized in this design are consistent with the idea of traditional Chinese medicine (TCM) syndrome differentiation and treatment. In this study, we summarized its concept, characteristics and advantages, and we also discussed its application in TCM clinical research. We hope this paper can provide more thinking and suggestions for TCM clinical trials.

          Release date:2023-04-14 10:48 Export PDF Favorites Scan
        • Predictive value analysis of mechanical power in the weaning outcome of ARDS patients with adaptive mechanical ventilation plus intelligent trigger mode

          Objective To investigate the predictive value of mechanical power (MP) in the weaning outcome of adaptive mechanical ventilation plus intelligent trigger (AMV+IntelliCycle, simply called AMV) mode for acute respiratory distress syndrome (ARDS) patients. Methods From November 2019 to March 2021, patients with mild to moderate ARDS who were treated with invasive mechanical ventilation in the intensive care unit of the First Affiliated Hospital of Jinzhou Medical University were divided into successful weaning group and failed weaning group according to the outcome of weaning. All patients were treated with AMV mode during the trial. The MP, oral closure pressure (P0.1), respiratory rate (RR) and tidal volume (VT) of the two groups were compared 30 min and 2 h after spontaneous breathing trial (SBT). The correlation between 30 min and 2 h MP and shallow rapid respiratory index (RSBI) was analyzed by Pearson correlation. Receiver operating characteristic (ROC) curve was used to analyze the predictive value of 30 min MP in ARDS patients with AMV mode weaning failure. Results Sixty-eight patients were included in the study, 49 of them were successfully removed and 19 of them failed. There was no statistical significance in age, gender, body mass index, oxygenation index, acute physiology and chronic health evaluation Ⅱ score, reasons for mechanical ventilation (respiratory failure, sepsis, intracranial lesions, and others) between the two groups (all P>0.05). The MP, P0.1 and RR at SBT 30 min and 2 h of the successful weaning group was lower than those of the failed weaning group (all P<0.05), but the VT of the successful weaning group was higher than the failed weaning group (all P<0.05). There was a significant relation between the MP at SBT 30 min and 2 h and RSBI (r value was 0.640 and 0.702 respectively, both P<0.05). The area under ROC curve of MP was 0.674, 95% confidence interval was 0.531 - 0.817, P value was 0.027, sensitivity was 71.73%, specificity was 91.49%, positive predictive value was 0.789, negative predictive value was 0.878, optimal cutoff value was 16.500. The results showed that 30 min MP had a good predictive value for the failure of weaning in AMV mode in ARDS patients. Conclusion MP can be used as an accurate index to predict the outcome of weaning in ARDS patients with AMV mode.

          Release date:2022-06-10 01:02 Export PDF Favorites Scan
        • A Modified Speech Enhancement Algorithm for Electronic Cochlear Implant and Its Digital Signal Processing Realization

          In order to improve the speech quality and auditory perceptiveness of electronic cochlear implant under strong noise background, a speech enhancement system used for electronic cochlear implant front-end was constructed. Taking digital signal processing (DSP) as the core, the system combines its multi-channel buffered serial port (McBSP) data transmission channel with extended audio interface chip TLV320AIC10, so speech signal acquisition and output with high speed are realized. Meanwhile, due to the traditional speech enhancement method which has the problems as bad adaptability, slow convergence speed and big steady-state error, versiera function and de-correlation principle were used to improve the existing adaptive filtering algorithm, which effectively enhanced the quality of voice communications. Test results verified the stability of the system and the de-noising performance of the algorithm, and it also proved that they could provide clearer speech signals for the deaf or tinnitus patients.

          Release date: Export PDF Favorites Scan
        • A multimodal medical image contrastive learning algorithm with domain adaptive denormalization

          Recently, deep learning has achieved impressive results in medical image tasks. However, this method usually requires large-scale annotated data, and medical images are expensive to annotate, so it is a challenge to learn efficiently from the limited annotated data. Currently, the two commonly used methods are transfer learning and self-supervised learning. However, these two methods have been little studied in multimodal medical images, so this study proposes a contrastive learning method for multimodal medical images. The method takes images of different modalities of the same patient as positive samples, which effectively increases the number of positive samples in the training process and helps the model to fully learn the similarities and differences of lesions on images of different modalities, thus improving the model's understanding of medical images and diagnostic accuracy. The commonly used data augmentation methods are not suitable for multimodal images, so this paper proposes a domain adaptive denormalization method to transform the source domain images with the help of statistical information of the target domain. In this study, the method is validated with two different multimodal medical image classification tasks: in the microvascular infiltration recognition task, the method achieves an accuracy of (74.79 ± 0.74)% and an F1 score of (78.37 ± 1.94)%, which are improved as compared with other conventional learning methods; for the brain tumor pathology grading task, the method also achieves significant improvements. The results show that the method achieves good results on multimodal medical images and can provide a reference solution for pre-training multimodal medical images.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        • Design of training system for foot ulcer patients based on three axis accelerometer

          The paper introduces a training system for foot ulcer patients based on three axis accelerometer, which uses three axis accelerometer and Apple mobile phone platform to guide foot ulcer patients to carry out a variety of lower limb muscle tissues training. The acceleration values of three directions for the foot training is obtained by analog-to-digital conversion and transmitted to the Apple mobile phone via its Bluetooth low energy. The Apple mobile phone accomplishes acceleration data preprocessing, numerical filtering and adaptive dual-threshold processing by our developed application program, so as to achieve the purpose of foot gesture recognition. The experimental result shows that the design can effectively present the training situation and effect of patients, encourage patients to adhere to the training, and provide some reference data for doctors and patients.

          Release date:2017-08-21 04:00 Export PDF Favorites Scan
        • Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias

          Electrocardiogram (ECG) signals are easily disturbed by internal and external noise, and its morphological characteristics show significant variations for different patients. Even for the same patient, its characteristics are variable under different temporal and physical conditions. Therefore, ECG signal detection and recognition for the heart disease real-time monitoring and diagnosis are still difficult. Based on this, a wavelet self-adaptive threshold denoising combined with deep residual convolutional neural network algorithm was proposed for multiclass arrhythmias recognition. ECG signal filtering was implemented using wavelet adaptive threshold technology. A 20-layer convolutional neural network (CNN) containing multiple residual blocks, namely deep residual convolutional neural network (DR-CNN), was designed for recognition of five types of arrhythmia signals. The DR-CNN constructed by residual block local neural network units alleviated the difficulty of deep network convergence, the difficulty in tuning and so on. It also overcame the degradation problem of the traditional CNN when the network depth was increasing. Furthermore, the batch normalization of each convolution layer improved its convergence. Following the recommendations of the Association for the Advancements of Medical Instrumentation (AAMI), experimental results based on 94 091 2-lead heart beats from the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 99.034 9%, 99.498 0% and 99.334 7% for multiclass classification, ventricular ectopic beat (Veb) and supra-Veb (Sveb) recognition, respectively. Using the same platform and database, experimental results showed that under the comparable network complexity, our proposed method significantly improved the recognition accuracy, sensitivity and specificity compared to the traditional deep learning networks, such as deep Multilayer Perceptron (MLP), CNN, etc. The DR-CNN algorithm improves the accuracy of the arrhythmia intelligent diagnosis. If it is combined with wearable equipment, internet of things and wireless communication technology, the prevention, monitoring and diagnosis of heart disease can be extended to out-of-hospital scenarios, such as families and nursing homes. Therefore, it will improve the cure rate, and effectively save the medical resources.

          Release date:2019-04-15 05:31 Export PDF Favorites Scan
        • Research on motor imagery recognition based on feature fusion and transfer adaptive boosting

          This paper proposes a motor imagery recognition algorithm based on feature fusion and transfer adaptive boosting (TrAdaboost) to address the issue of low accuracy in motor imagery (MI) recognition across subjects, thereby increasing the reliability of MI-based brain-computer interfaces (BCI) for cross-individual use. Using the autoregressive model, power spectral density and discrete wavelet transform, time-frequency domain features of MI can be obtained, while the filter bank common spatial pattern is used to extract spatial domain features, and multi-scale dispersion entropy is employed to extract nonlinear features. The IV-2a dataset from the 4th International BCI Competition was used for the binary classification task, with the pattern recognition model constructed by combining the improved TrAdaboost integrated learning algorithm with support vector machine (SVM), k nearest neighbor (KNN), and mind evolutionary algorithm-based back propagation (MEA-BP) neural network. The results show that the SVM-based TrAdaboost integrated learning algorithm has the best performance when 30% of the target domain instance data is migrated, with an average classification accuracy of 86.17%, a Kappa value of 0.723 3, and an AUC value of 0.849 8. These results suggest that the algorithm can be used to recognize MI signals across individuals, providing a new way to improve the generalization capability of BCI recognition models.

          Release date: Export PDF Favorites Scan
        • Research on heart rate extraction algorithm in motion state based on normalized least mean square combining ensemble empirical mode decomposition

          In order to eliminate the influence of motion artifacts, high-frequency noise and baseline drift on photoplethysmographic (PPG), and to obtain the accurate value of heart rate in motion state, this paper proposed a de-noising method of PPG signal based on normalized least mean square (NLMS) adaptive filtering combining ensemble empirical mode decomposition(EEMD). Firstly, the PPG signal containing noise is passed through an adaptive filter with a 3-axis acceleration sensor as a reference signal to filter out motion artifacts. Secondly, the PPG signal is decomposed by EEMD to obtain a series of intrinsic modal function (IMF) according to the frequency from high to low. The threshold range of the signal is judged by the permutation entropy (PE) criterion, thereby filtering out the high frequency noise and the baseline drift. The experimental results show that the Pearson correlation coefficient between the calculated heart rate of PPG signal and the standard heart rate based on electrocardiogram (ECG) signal is 0.731 and the average absolute error percentage is 6.10% under different motion states, which indicates that the method can accurately calculate the heart rate in moving state and is beneficial to the physiological monitoring under the state of human motion.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Research on adaptive quasi-linear viscoelastic model for nonlinear viscoelastic properties of in vivo soft tissues

          The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.

          Release date:2017-10-23 02:15 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品