Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.
The monitoring of pregnant women is very important. It plays an important role in reducing fetal mortality, ensuring the safety of perinatal mother and fetus, preventing premature delivery and pregnancy accidents. At present, regular examination is the mainstream method for pregnant women's monitoring, but the means of examination out of hospital is scarce, and the equipment of hospital monitoring is expensive and the operation is complex. Using intelligent information technology (such as machine learning algorithm) can analyze the physiological signals of pregnant women, so as to realize the early detection and accident warning for mother and fetus, and achieve the purpose of high-quality monitoring out of hospital. However, at present, there are not enough public research reports related to the intelligent processing methods of out-of-hospital monitoring for pregnant women, so this paper takes the out-of-hospital monitoring for pregnant women as the research background, summarizes the public research reports of intelligent processing methods, analyzes the advantages and disadvantages of the existing research methods, points out the possible problems, and expounds the future development trend, which could provide reference for future related researches.
Coronary heart disease is the second leading cause of death worldwide. As a preventable and treatable chronic disease, early screening is of great importance for disease control. However, previous screening tools relied on physician assistance, thus cannot be used on a large scale. Many facial features have been reported to be associated with coronary heart disease and may be useful for screening. However, these facial features have limitations such as fewer types, irregular definitions and poor repeatability of manual judgment, so they can not be routinely applied in clinical practice. With the development of artificial intelligence, it is possible to integrate facial features to predict diseases. A recent study published in the European Heart Journal showed that coronary heart disease can be predicted using artificial intelligence based on facial photos. Although this work still has some limitations, this novel technology will be promise for improving disease screening and diagnosis in the future.
Generative artificial intelligence (AI) technology plays a significant role in enhancing data application capabilities, improving disease diagnosis and treatment plans, and advancing health management, drug development, genetic analysis, and precision medicine. However, due to the diagnostic complexity, treatment diversity, and high technical demands of orthopedic diseases, the application of generative AI in orthopedics is still in its early exploration stage. This paper, based on the experience of applying generative AI, summarizes the concept, working principles, progress of application in orthopedics, as well as the existing shortcomings and optimization strategies, aiming to provide valuable insights for the application of generative AI in orthopedics clinical practice.
ObjectiveTo summarize the current research progress in the prediction of the efficacy of neoadjuvant therapy of breast cancer based on the application of artificial intelligence (AI) and radiomics. MethodThe researches on the application of AI and radiomics in neoadjuvant therapy of breast cancer in recent 5 years at home and abroad were searched in CNKI, Google Scholar, Wanfang database and PubMed database, and the related research progress was reviewed. ResultsAI had developed rapidly in the field of medical imaging, and molybdenum target, ultrasound and magnetic resonance imaging combined with AI had been deepened and expanded in different degrees in the application research of breast cancer diagnosis and treatment. In the research of molybdenum target combined with AI, the high sensitivity of molybdenum target to microcalcification was mostly used to improve the accuracy of early detection and diagnosis of breast cancer, so as to achieve the clinical purpose of early detection and diagnosis. However, in terms of prediction of neoadjuvant efficacy research of breast cancer, ultrasound and magnetic resonance imaging combined with AI were more prevalent, and their popularity remained unabated. ConclusionIn the monitoring of neoadjuvant therapy for breast cancer, the use of properly designed AI and radiomics models can give full play to its role in the predicting the curative effect of neoadjuvant therapy, and help to guide doctors in clinical diagnosis and treatment and evaluate the prognosis of breast cancer patients.
ObjectiveTo evaluate the application value of three-dimensional (3D) reconstruction in preoperative surgical diagnosis of new classification criteria for lung adenocarcinoma, which is helpful to develop a deep learning model of artificial intelligence in the auxiliary diagnosis and treatment of lung cancer.MethodsThe clinical data of 173 patients with ground-glass lung nodules with a diameter of ≤2 cm, who were admitted from October 2018 to June 2020 in our hospital were retrospectively analyzed. Among them, 55 were males and 118 were females with a median age of 61 (28-82) years. Pulmonary nodules in different parts of the same patient were treated as independent events, and a total of 181 subjects were included. According to the new classification criteria of pathological types, they were divided into pre-invasive lesions (atypical adenomatous hyperplasia and and adenocarcinoma in situ), minimally invasive adenocarcinoma and invasive adenocarcinoma. The relationship between 3D reconstruction parameters and different pathological subtypes of lung adenocarcinoma, and their diagnostic values were analyzed by multiplanar reconstruction and volume reconstruction techniques.ResultsIn different pathological types of lung adenocarcinoma, the diameter of lung nodules (P<0.001), average CT value (P<0.001), consolidation/tumor ratio (CTR, P<0.001), type of nodules (P<0.001), nodular morphology (P<0.001), pleural indenlation sign (P<0.001), air bronchogram sign (P=0.010), vascular access inside the nodule (P=0.005), TNM staging (P<0.001) were significantly different, while nodule growth sites were not (P=0.054). At the same time, it was also found that with the increased invasiveness of different pathological subtypes of lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. Meanwhile, nodule diameter and the average CT value or CTR were independent risk factors for malignant degree of lung adenocarcinoma.ConclusionImaging signs of lung adenocarcinoma in 3D reconstruction, including nodule diameter, the average CT value, CTR, shape, type, vascular access conditions, air bronchogram sign, pleural indenlation sign, play an important role in the diagnosis of lung adenocarcinoma subtype and can provide guidance for personalized therapy to patients in clinics.
Deep brain stimulation (DBS), as a major branch of functional neurosurgery, has been widely used in the treatment of diseases such as Parkinson disease, primary tremor, and muscle tone disorder. It can effectively alleviate patients’ symptoms, reduce drug dependence, and minimize adverse drug reactions. In recent years, with the rapid development of artificial intelligence (AI) in the medical field, it has gradually penetrated into multiple aspects of DBS. This article reviews the current application status of AI technology in DBS therapy and explores its future development prospects, providing new solutions for significant improvement in patients’ quality of life.
Objective To investigate the accuracy of 18F-FDG positron emission tomography/computed tomography (PET/CT) combined with CT three-dimensional reconstruction (CT-3D) in the differential diagnosis of benign and malignant pulmonary nodules. Methods The clinical data of patients who underwent pulmonary nodule surgery in the Department of Thoracic Surgery, Northern Jiangsu People's Hospital from July 2020 to August 2021 were retrospectively analyzed. The preoperative 18F-FDG PET/CT and chest enhanced CT-3D and other imaging data were extracted. The parameters with diagnostic significance were screened by the area under the receiver operating characteristic (ROC) curve (AUC). Three prediction models, including PET/CT prediction model (MOD PET), CT-3D prediction model (MOD CT-3D), and PET/CT combined CT-3D prediction model (MOD combination), were established through binary logistic regression, and the diagnostic performance of the models were validated by ROC curve. Results A total of 125 patients were enrolled, including 57 males and 68 females, with an average age of 61.16±8.57 years. There were 46 patients with benign nodules, and 79 patients with malignant nodules. A total of 2 PET/CT parameters and 5 CT-3D parameters were extracted. Two PET/CT parameters, SUVmax≥1.5 (AUC=0.688) and abnormal uptake of hilar/mediastinal lymph node metabolism (AUC=0.671), were included in the regression model. Among the CT-3D parameters, CT value histogram peaks (AUC=0.694) and CT-3D morphology (AUC=0.652) were included in the regression model. Finally, the AUC of the MOD PET was verified to be 0.738 [95%CI (0.651, 0.824)], the sensitivity was 74.7%, and the specificity was 60.9%; the AUC of the MOD CT-3D was 0.762 [95%CI (0.677, 0.848)], the sensitivity was 51.9%, and the specificity was 87.0%; the AUC of the MOD combination was 0.857 [95%CI (0.789, 0.925)], the sensitivity was 77.2%, the specificity was 82.6%, and the differences were statistically significant (P<0.001). Conclusion 18F-FDG PET/CT combined with CT-3D can improve the diagnostic performance of pulmonary nodules, and its specificity and sensitivity are better than those of single imaging diagnosis method. The combined prediction model is of great significance for the selection of surgical timing and surgical methods for pulmonary nodules, and provides a theoretical basis for the application of artificial intelligence in the pulmonary nodule diagnosis.
Objective To explore the application of artificial intelligence in the risk assessment and diagnosis of pancreatic cancer, and to point out its limitations and future suggestions, so as to promote the further application of artificial intelligence in the future. Method The related literatures on the application of artificial intelligence in the risk assessment and diagnosis of pancreatic cancer at home and abroad in recent years were reviewed. Results The usage of artificial intelligence models to assess high-risk patients was beneficial to the diagnosis of pancreatic cancer, although more data were needed to support its role in pancreatic cancer screening. In terms of early diagnosis, artificial intelligence technology could rapidly locate high-risk groups through medical imaging, pathological examination, biomarkers, and so on, and then detected pancreatic cancer at an early stage. Conclusion Despite some limitations, artificial intelligence will play an important role in the early diagnosis and risk prediction of pancreatic cancer in the future due to its powerful computational power.