This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.
Hemodynamics plays a vital role in the development and progression of cardiovascular diseases, and is closely associated with changes in morphology and function. Reliable detection of hemodynamic changes is essential to improve treatment strategies and enhance patient prognosis. The combination of computational fluid dynamics with cardiovascular imaging technology has extended the accessibility of hemodynamics. This review provides a comprehensive summary of recent developments in the application of computational fluid dynamics for cardiovascular hemodynamic assessment and a succinct discussion for potential future development.
Objective To establish a personalized Stanford type B aortic dissection numerical simulation model, and using computational fluid dynamics (CFD) numerical simulation to obtain the hemodynamic behavior and law of the type B aortic dissection at different stages of development. Methods Based on the theory of three-dimensional model reconstruction, we used CT images of a patient with type B aortic dissection in the Xiamen Cardiovascular Hospital of Xiamen University, relevant medical image processing software to reconstruct a personalized aortic three-dimensional model, and CFD to reconstruct the model which was simulated in fluid mechanics. Results The three-dimensional reconstruction model could intuitively observe the changing trend of the false cavity at different stages of the dissection development. Through fluid mechanics simulation, the blood flow rate, pressure, wall shear stress, vascular wall Von Mises stress and other parameters at different stages of the dissection development were obtained. Conclusion The hemodynamic behavior and law of relevant parameters in the development stage of aortic dissection are analyzed. The combination of the values of relevant parameters and clinical medical detection and diagnosis can well predict the development of the disease, and finally provide more theories and methods for the scientific diagnosis of aortic dissection.
Objective To study the hemodynamic characteristics of concealed perforator flap in mini-pigs by ultrasonic Doppler technique. Methods Seven 7-month-old mini-pigs, weighing 20-25 kg, were included in the study. The saphenous artery perforator flap (group A, n=4), saphenous artery concealed perforator flap (group B, n=5), and saphenous artery concealed perforator flap combined with sarcolemma (group C, n=5) models were established randomly on both hind limbs of pigs. The pigs and flap survival conditions were observed after operation. The percentage of flap survival area was calculated by Photoshop CS5 software at 5 days after operation. Ultrasonic Doppler technique was performed on the flaps before operation and at immediate, 3 days, and 5 days after operation to record the hemodynamic changes of the flaps. The hemodynamic indicators of saphenous artery (inner diameter, peak systoli velocity, resistance index, and blood flow) and saphenous vein (inner diameter, maximum velocity, and blood flow) were recorded. Results At 1 day after operation, 1 pig died of infection, and the rest survived until the experiment was completed. Finally, the 3 flaps of group A, 4 of group B, and 5 of group C were included in the study. The flaps of the 3 groups all showed swelling after operation, which was most significant at 3 days. At 3 days after operation, the flaps in group B showed partial bruising and necrosis. At 5 days after operation, the flaps in groups A and C were basically alive, and the necrosis area of flap in group B increased further. The percentage of flap survival area in groups A, B, and C were 99.7%±0.5%, 74.8%±26.4%, and 100%, respectively. The percentage of flap was significantly lower in group B than in groups A and C (P<0.05). There was no significant difference between groups A and C (P>0.05). There were significant differences in the hemodynamic indicators of saphenous artery and vein between different time points in 3 groups (P<0.05). There was no significant difference in each indicator between groups at each time point (P>0.05). Conclusion Both the saphenous artery concealed perforator flap and the flap combined with sarcolemma have stable blood flow, but the survival area of the latter was better than the former.
Surgical intervention for chronic thoracoabdominal aortic dissecting aneurysms (cTAADA) is regarded as one of the most challenging procedures in the field of vascular surgery. For nearly six decades, open repair predominantly utilizing prosthetic grafts has been the treatment of choice for cTAADA. With advances in minimally invasive endovascular technologies, two novel surgical approaches have emerged: total endovascular stent-graft repair and hybrid procedures combining retrograde debranching of visceral arteries with endovascular stent-graft repair (abbreviated as hybrid procedure). Although total endovascular stent-graft repair offers reduced trauma and quicker recovery, limitations persist in clinical application due to hostile anatomical requirements of the aorta, high costs, and the lack of universally available stent-graft products. Hybrid repair, integrating the minimally invasive ethos of endovascular repair with visceral artery debranching techniques, has increasingly become a significant surgical modality for managing thoracoabdominal aneurysms, especially in cases unsuitable for open surgery or total endovascular treatment due to anatomical constraints such as aortic tortuosity or narrow true lumens in dissections. Recent enhancements in hybrid surgical approaches include ongoing optimization of visceral artery reconstruction strategies based on hemodynamic analyses, and exploration of the comparative benefits of staged versus concurrent surgical interventions.
Objective To investigate the correlation of intracranial arachnoid cyst (IAC) with epilepsy and the possible mechanism of seizure induced by IAC. Methods Patients with IAC, who were treated in West China Hospital of Sichuan University between January 2009 and January 2019, were included and divided into IAC with epilepsy group and IAC without epilepsy group according to whether they were diagnosed with epilepsy. We collected the IAC location information of all subjects after the establishment of a three-dimensional spatial coordinate system of MRI images. Computational fluid dynamics technology was used to establish a blood vessel model in cyst area and perform hemodynamic analysis basing on contrast-enhanced CT images. Results A total of 72 patients were enrolled, including 24 in the IAC with epilepsy group and 48 in the IAC without epilepsy group. There was no significant difference between the two groups in terms of sex, age, IAC location, the volumes or the maximum diameters of IAC (P>0.05). Consecutive areas formed by the seven high-risk areas found in the IAC with epilepsy group were located in the temporal area. The seven high-risk areas were simultaneous IAC location in 5 patients in the IAC with epilepsy group and in 1 patient in the IAC without epilepsy group, and the difference was statistically significant (χ2=5.114, P=0.024). Comparison of the hemodynamic parameters between the two types of vascular models revealed similar pressure changes and blood pressure parameters, with lower blood flow and higher mean vascular wall shear stress in the IAC with epilepsy group. Conclusions IAC may cause epilepsy by increasing adjacent blood vessel stenosis and blood vessel wall shear stress through cyst space-occupying effect. The most common location of IAC with epilepsy is the temporal area. The occupying effect of IAC should be considered in the location of epileptogenic foci before surgery for IAC patients with epilepsy.
Hemodynamic situation is an important factor of recurrence of postoperative carotid artery aneurysm. In order to investigate the hemodynamic factors of postoperative carotid artery aneurysm affect carotid artery aneurysm recurrence, we established a 3D finite element carotid artery aneurysm for the preoperative and postoperative periods using the three-dimensional reconstruction techniques. And then we measured the hemodynamic factors of carotid artery aneurysm of preoperative and postoperative by the finite element method. The carotid artery aneurysm model has an accurate and realistic shape; the pressure of the recurrence of aneurysm was reduced significantly after surgery,wall shear stress increased significantly at residual neck, and blood flow velocity increased significantly, which will increase the risk of recurrence. The hemodynamic analysis provides a reference for development of aneurysm clinical treatment programs and prevention of recurrence.
This study analyzed the inherent relation between arterial blood mass flow and muscle atrophy of residual limb to provide some necessary information and theoretical support for the clinical rehabilitation of lower limb amputees. Three-dimensional arterial model reconstruction was performed on both intact side and residual limb of a unilateral transfemoral amputee who is the subject. Then hemodynamic calculation was carried out to comparatively analyze the mass flow state at each arterial outlet of both lower extremities. The muscle atrophy ratio of residual limb was calculated by measuring the cross-sectional area of bilateral muscles. Based on the blood supply relationship, the correlation between arterial blood flow reduction ratio and muscle atrophy ratio was discussed. The results showed that the mass flow of superficial femoral arteries and lateral circumflex femoral arteries severely reduced. Meanwhile rectus femoris, vastus lateralis and vastus medialis which were fed by these arteries showed great atrophy too. On the contrary, the mass flow of deep femoral arteries and medial femoral circumflex arteries slightly reduced. Meanwhile gracilis, adductor longus, long head of biceps which were fed by these arteries showed mild atrophy too. These results indicated that there might be a positive and promotion correlation between the muscle atrophy ratio and the blood mass flow reduction ratio of residual limb during rehabilitation.
Objective To explore the hemodynamic assessment after radical surgery in children with tetralogy of Fallot (TOF) by both echocardiography and Mostcare monitor. Methods Clinical data of 63 children with TOF who underwent radical surgery in our hospital from February 2016 to June 2018 were retrospectively analyzed, including 34 males and 29 females, aged 6-24 (9.82±5.77) months. There were 19 patients undergoing transannular patch reconstruction of the right ventricular outflow tract (a transannular patch group) while 44 patients retained the pulmonary valve annulus (a non-transannular patch group) . The echocardiography and Mostcare monitor parameters were recorded and brain natriuretic peptide was tested at the time points of 0, 8, 12, 24 and 48 hours after operation (T 0, T 1, T 2, T 4) to analyze their correlations and the change trend at different time points after radical surgery. Results The left ventricular ejection fraction at T 1 (43.49%±3.82%) was lower than that at T 0 (48.29%±4.55%), T 2 (45.83%±3.69%), T 3 (53.76%±4.43%) and T 4 (60.54%±3.23%, P<0.05). The cardiac index at T 1 (1.85±0.35 L·min?1·m?2) was lower than that at T 0 (2.11±0.38 L·min?1·m?2), T 2 (2.07±0.36 L·min?1·m?2), T 3 (2.42±0.37 L·min?1·m?2) and T 4 (2.82±0.42 L·min?1·m?2, P<0.05). The cardiac circulation efficiency at T1 (0.19±0.05) was lower than that at T 0 (0.22±0.06), T 2 (0.22±0.05), T 3 (0.28±0.06) and T 4 (0.34±0.06, P<0.05). The right ventricular two-chambers view fraction area change at T 1 (23.17%±3.11%) was lower than that at T 0 (25.81%±3.74%), T 2 (25.38%±3.43%), T 3 (30.60%±4.50%) and T 4 (36.94%±5.85%, P<0.05). The pulse pressure variability was the highest at T 0 (18.76%±3.58%), followed by T 1 (14.81%±3.32%), T 2 (12.44%±2.94%), T 3 (10.39%±2.96%) and T 4 (9.18%±1.92%, P<0.05). The blood brain natriuretic peptide was higher at T 1 (846.67±362.95 pg/ml) than that at T 0 (42.60±18.06 pg/ml), T 2 (730.95±351.09 pg/ml), T 3 (510.98±290.39 pg/ml) and T 4 (364.41±243.56 pg/ml, P<0.05). There was no significant difference in left ventricular ejection fraction, cardiac circulation efficiency and heart index between the two groups (P>0.05). The right ventricular two-chambers view fraction area change of the transannular patch group was significantly lower than that of the non-transannular patch group at each time point (P<0.05). The blood brain natriuretic peptide and pulse pressure variability of the transannular patch group were significantly higher than those of the non-transannular patch group (P<0.05). Left ventricular ejection fraction was positively correlated with cardiac index (r=0.637, P=0.001) and cardiac circulation efficiency (r=0.462, P=0.001) while was significantly negatively correlated with blood brain natriuretic peptide (r=–0.419, P=0.001). Conclusion Both methods can accurately reflect the state of cardiac function. Mostcare monitor has a good consistency with echocardiography. Using transannular patch to recontribute right ventricular outflow tract in operation has more influence on right ventricular systolic function. The Mostcare monitor can guide the hemodynamic management after surgery in real time, continuously and accurately.
Objective To evaluate the early clinical outcomes of the Renatus? balloon-expandable valve in the treatment of severe aortic stenosis. MethodsFrom November 2021 to April 2022, a total of 38 patients who received Renatus? balloon-expandable valve for severe aortic stenosis in Guangdong Provincial People's Hospital were included. There were 22 males and 16 females, with an average age of 73.7±5.3 years. Mean aortic gradient and peak aortic jet velocity at baseline, post-procedure, and follow-up were compared. Clinical outcomes including all-cause mortality, perivalvular leakage, serious adverse cardiovascular events and the occurrence of permanent pacemaker implantation were assessed. ResultsAll patients completed the procedure successfully without conversion to thoracotomy or perioperative death. The post-implant mean aortic pressure gradient was decreased from 41.5 (27.8, 58.8) mm Hg to 6.0 (3.0, 8.0) mm Hg, and the peak aortic jet velocity was also decreased from 4.1±0.9 m/s to 1.7±0.4 m/s (P<0.001). Pacemakers were required in 2 (5.3%) patients. The median follow-up time was 27.5 (23.0, 87.5) d, with a follow-up rate of 100.0%. The mean aortic gradient was 8.0 (7.0, 10.8) mm Hg and peak aortic jet velocity was 2.0±0.3 m/s, showing significant improvement compared with those in the preoperative period (P<0.001). No severe aortic regurgitation or paravalvular leak was observed. There was no serious cardiovascular adverse event or reoperative event during the study period. ConclusionTranscatheter aortic valve replacement with the domestic Renatus? balloon-expandable valve system is a safe and effective procedure for selected patients with severe aortic stenosis who are at high risk or not candidates for surgical aortic valve replacement.