1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "image processing" 15 results
        • Brain magnetic resonance image registration based on parallel lightweight convolution and multi-scale fusion

          Medical image registration plays an important role in medical diagnosis and treatment planning. However, the current registration methods based on deep learning still face some challenges, such as insufficient ability to extract global information, large number of network model parameters, slow reasoning speed and so on. Therefore, this paper proposed a new model LCU-Net, which used parallel lightweight convolution to improve the ability of global information extraction. The problem of large number of network parameters and slow inference speed was solved by multi-scale fusion. The experimental results showed that the Dice coefficient of LCU-Net reached 0.823, the Hausdorff distance was 1.258, and the number of network parameters was reduced by about one quarter compared with that before multi-scale fusion. The proposed algorithm shows remarkable advantages in medical image registration tasks, and it not only surpasses the existing comparison algorithms in performance, but also has excellent generalization performance and wide application prospects.

          Release date: Export PDF Favorites Scan
        • Medical Image Processing Based on Wavelet Characteristics and Edge Blur Detection

          To solve the problems of noise interference and edge signal weakness for the existing medical image, we used two-dimensional wavelet transform to process medical images. Combined the directivity of the image edges and the correlation of the wavelet coefficients, we proposed a medical image processing algorithm based on wavelet characteristics and edge blur detection. This algorithm improved noise reduction capabilities and the edge effect due to wavelet transformation and edge blur detection. The experimental results showed that directional correlation improved edge based on wavelet transform fuzzy algorithm could effectively reduce the noise signal in the medical image and save the image edge signal. It has the advantage of the high-definition and de-noising ability.

          Release date: Export PDF Favorites Scan
        • Study on precise localization of intraoperative matrix electrode

          In order to accurately localize the image coordinates and serial numbers of intraoperative subdural matrix electrodes, a matrix electrode localization algorithm for image processing is proposed in this paper. Firstly, by using point-by-point extended electrode location algorithm, the electrode is expanded point-by-point vertically and horizontally, and the initial coordinates and serial numbers of each electrode are determined. Secondly, the single electrode coordinate region extraction algorithm is used to determine the best coordinates of each electrode, so that the image coordinates and serial numbers of all electrodes are determined point-by-point. The results show that the positioning accuracy of electrode serial number is 100%, and the electrode coordinate positioning error is less than 2 mm. The algorithms in this paper can accurately localize the image coordinates and the serial numbers of a matrix electrode arranged in an arc, which could aid drawing of cortical function mapping, and achieve precise positioning of brain functional areas, so that it can be widely used in neuroscience research and clinical application based on electrocorticogram analysis.

          Release date:2017-12-21 05:21 Export PDF Favorites Scan
        • Research on the Range of Motion Measurement System for Spine Based on LabVIEW Image Processing Technology

          A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 N·m to 5 N·m. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

          Release date: Export PDF Favorites Scan
        • Research on adaptive pulse signal extraction algorithm based on fingertip video image

          In order to solve the saturation distortion phenomenon of R component in fingertip video image, this paper proposes an iterative threshold segmentation algorithm, which adaptively generates the region to be detected for the R component, and extracts the human pulse signal by calculating the gray mean value of the region to be detected. The original pulse signal has baseline drift and high frequency noise. Combining with the characteristics of pulse signal, a zero phase digital filter is designed to filter out noise interference. Fingertip video images are collected on different smartphones, and the region to be detected is extracted by the algorithm proposed in this paper. Considering that the fingertip’s pressure will be different during each measurement, this paper makes a comparative analysis of pulse signals extracted under different pressures. In order to verify the accuracy of the algorithm proposed in this paper in heart rate detection, a comparative experiment of heart rate detection was conducted. The results show that the algorithm proposed in this paper can accurately extract human heart rate information and has certain portability, which provides certain theoretical help for further development of physiological monitoring application on smartphone platform.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Design and experiment of online monitoring system for long-term culture of embryo

          In the study of embryo development process, the morphological features at different stages are essential to evaluate developmental competence of the embryo, which can be used to optimize and improve the system for in-vitro embryo culture. In this paper, an online monitoring system was designed for long-term culture of embryos, based on a monitoring strategy of low-magnification search and high-magnification observation. Three optical modules of 4× phase contrast, 10× and 20× Hoffman modulation phase contrast were configured in this system to meet the requirements of different fields of view, especially when the size of the embryo increases during the culture. Using an optomechanical system matching design, an error control and alignment test, the resolution of optical imaging was guaranteed, and a relief stereoscopic imaging with high contrast of embryos was obtained. Through low-magnification field of view to identify and locate embryos and high-magnification field of view to capture the details, the system realized online tracking and monitoring of embryos. In addition, we developed and verified an embryo identifying and locating algorithm based on image contour area and definition evaluation. The online monitoring system of in-vitro embryo culture proposed in this paper can track and record the morphological features of embryos without affecting the embryo development, providing a basis for the assessment of embryo development and the optimization of in-vitro culture system.

          Release date:2022-02-21 01:13 Export PDF Favorites Scan
        • A Bibliometrics Study of Literature on Medical Image Processing for the Past Ten Years

          We searched and retrieved literature on the topic of medical image processing published on SCI journals in the past 10 years. We then imported the retrieved literature into TDA for data cleanup before data analysis and processing by EXCLE and UCINET to generate tables and figures that could indicate disciplinary correlation and research hotspots from the perspective of bibliometrics. The results indicated that people in Europe and USA were leading researchers on medical image processing with close international cooperation. Many disciplines contributed to the fast development of medical image processing with intense interdisciplinary researches. The papers that we found show recent research hotspots of the algorithm, system, model, image and segmentation in the field of medical image processing. Cluster analysis on key words of high frequency demonstrated complicated clustering relationship.

          Release date: Export PDF Favorites Scan
        • Development and validation of an automatic diagnostic tool for lumbar stability based on deep learning

          Objective To develop an automatic diagnostic tool based on deep learning for lumbar spine stability and validate diagnostic accuracy. Methods Preoperative lumbar hyper-flexion and hyper-extension X-ray films were collected from 153 patients with lumbar disease. The following 5 key points were marked by 3 orthopedic surgeons: L4 posteroinferior, anterior inferior angles as well as L5 posterosuperior, anterior superior, and posterior inferior angles. The labeling results of each surgeon were preserved independently, and a total of three sets of labeling results were obtained. A total of 306 lumbar X-ray films were randomly divided into training (n=156), validation (n=50), and test (n=100) sets in a ratio of 3∶1∶2. A new neural network architecture, Swin-PGNet was proposed, which was trained using annotated radiograph images to automatically locate the lumbar vertebral key points and calculate L4, 5 intervertebral Cobb angle and L4 lumbar sliding distance through the predicted key points. The mean error and intra-class correlation coefficient (ICC) were used as an evaluation index, to compare the differences between surgeons’ annotations and Swin-PGNet on the three tasks (key point positioning, Cobb angle measurement, and lumbar sliding distance measurement). Meanwhile, the change of Cobb angle more than 11° was taken as the criterion of lumbar instability, and the lumbar sliding distance more than 3 mm was taken as the criterion of lumbar spondylolisthesis. The accuracy of surgeon annotation and Swin-PGNet in judging lumbar instability was compared. Results ① Key point: The mean error of key point location by Swin-PGNet was (1.407±0.939) mm, and by different surgeons was (3.034±2.612) mm. ② Cobb angle: The mean error of Swin-PGNet was (2.062±1.352)° and the mean error of surgeons was (3.580±2.338)°. There was no significant difference between Swin-PGNet and surgeons (P>0.05), but there was a significant difference between different surgeons (P<0.05). ③ Lumbar sliding distance: The mean error of Swin-PGNet was (1.656±0.878) mm and the mean error of surgeons was (1.884±1.612) mm. There was no significant difference between Swin-PGNet and surgeons and between different surgeons (P>0.05). The accuracy of lumbar instability diagnosed by surgeons and Swin-PGNet was 75.3% and 84.0%, respectively. The accuracy of lumbar spondylolisthesis diagnosed by surgeons and Swin-PGNet was 70.7% and 71.3%, respectively. There was no significant difference between Swin-PGNet and surgeons, as well as between different surgeons (P>0.05). ④ Consistency of lumbar stability diagnosis: The ICC of Cobb angle among different surgeons was 0.913 [95%CI (0.898, 0.934)] (P<0.05), and the ICC of lumbar sliding distance was 0.741 [95%CI (0.729, 0.796)] (P<0.05). The result showed that the annotating of the three surgeons were consistent. The ICC of Cobb angle between Swin-PGNet and surgeons was 0.922 [95%CI (0.891, 0.938)] (P<0.05), and the ICC of lumbar sliding distance was 0.748 [95%CI(0.726, 0.783)] (P<0.05). The result showed that the annotating of Swin-PGNet were consistent with those of surgeons. ConclusionThe automatic diagnostic tool for lumbar instability constructed based on deep learning can realize the automatic identification of lumbar instability and spondylolisthesis accurately and conveniently, which can effectively assist clinical diagnosis.

          Release date:2023-02-13 09:57 Export PDF Favorites Scan
        • Assessment of skin aging grading based on computer vision

          Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e., mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.

          Release date:2017-06-19 03:24 Export PDF Favorites Scan
        • Research on Measuring the Velocity and Displacement of the Coxa and Knee Based on Video Image Processing

          Based on repeated experiments as well as continuous researching and improving, an efficient scheme to measure velocity and displacement of the coxa and knee movements based on video image processing technique is presented in this paper. The scheme performed precise and real-time quantitative measurements of 2D velocity or displacement of the coxa and knee using a video camera mounted on one side of the healing and training beds. The beds were based on simplified pinhole projection model. In addition, we used a special-designed auxiliary calibration target, composed by 24 circle points uniformly located on two concentric circles and two straight rods which can rotate freely along the concentric center within the vertical plane, to do the measurements. Experiments carried out in our laboratory showed that the proposed scheme could basically satisfy the requirements about precision and processing speed of such kind of system, and would be very suitable to be applied to smart evaluation/training and healing system for muscles/balance function disability as an advanced and intuitional helping method.

          Release date: Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品