1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "multi-differentiation" 2 results
        • Study on the biological characteristics of umbilical cord mesenchymal stem cells and their reparative effects on bleomycin-induced acute lung injury in mice

          ObjectiveTo investigate the multi-directional differentiation potential and other biological characteristics of chicken umbilical cord mesenchymal stem cells (UMSC), as well as their reparative effects on bleomycin (BLM)-induced lung injury in mice. MethodsAn acute lung injury model in mice was established by injecting BLM into the bronchus. UMSC were then transplanted via the tail vein. The reparative effects of UMSC on lung injury were evaluated through pathological section observation, survival and differentiation of transplanted cells in mice, and detection of hydroxyproline (HYP) content, among other indicators. ResultsThe UMSC successfully isolated in this study positively expressed specific surface markers CD29, CD44, CD90, and CD166, while the expression of CD34 and CD45 was negative. Induced UMSC could differentiate into adipocytes, osteocytes, chondrocytes, and alveolar epithelial cells. Animal experiments revealed that BLM-treated mice exhibited damaged alveolar structures, significant inflammatory cell infiltration, abnormal collagen deposition, and pulmonary fibrosis. However, after UMSC transplantation, the extent and severity of lung damage were reduced, and the HYP content in lung tissue decreased but remained higher than that of the control group. ConclusionUMSC can continuously proliferate and maintain their biological characteristics under in vitro culture conditions. They possess the ability to migrate to damaged sites and undergo directional differentiation, demonstrating a certain reparative effect on BLM-induced acute lung injury in mice.

          Release date: Export PDF Favorites Scan
        • The application of urine derived stem cells in regeneration of musculoskeletal system

          Objective To review the application of urine derived stem cells (USCs) in regeneration of musculoskeletal system. Methods The original literature about USCs in the regeneration of musculoskeletal system was extensively reviewed and analyzed. Results The source of USCs is noninvasive and extensive. USCs express MSCs surface markers with stable proliferative and multi-directional differentiation capabilities, and are widely used in bone, skin, nerve, and other skeletal and muscle system regeneration fields and show a certain repair capacity. Conclusion USCs from non-invasive sources have a wide application prospect in the regeneration of musculoskeletal system, but the definite biological mechanism of its repair needs further study.

          Release date:2018-10-31 09:22 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品