Objective To scoping review the risk prediction models for sarcopenia in China was conducted, and provide reference for scientific prevention and treatment of the disease and related research. Methods We systematically searched PubMed, Web of Science, Cochrane Library, Embase, China Knowledge Network, China Biomedical Literature Database, Wanfang Database, and Weipu Database for literature related to myasthenia gravis prediction models in China, with a time frame from the construction of the database to April 30, 2024 for the search. The risk of bias and applicability of the included literature were assessed, and information on the construction of myasthenia gravis risk prediction models, model predictors, model presentation form and performance were extracted. Results A total of 25 literatures were included, the prevalence of sarcopenia ranged from 12.16% to 54.17%, and the study population mainly included the elderly, the model construction methods were categorized into two types: logistic regression model and machine learning, and age, body mass index, and nutritional status were the three predictors that appeared most frequently. Conclusion Clinical caregivers should pay attention to the high-risk factors for the occurrence of sarcopenia, construct models with accurate predictive performance and high clinical utility with the help of visual model presentation, and design prospective, multicenter internal and external validation methods to continuously improve and optimize the models to achieve the best predictive effect.
ObjectiveWhen using multi-center data to construct clinical prediction models, the independence assumption of data will be violated, and there is an obvious clustering effect among research objects. In order to fully consider the clustering effect, this study intends to compare the model performance of the random intercept logistic regression model (RI) and the fixed effects model (FEM) considering the clustering effect with the standard logistic regression model (SLR) and the random forest algorithm (RF) without considering the clustering effect under different scenarios. MethodsIn the process of forecasting model establishment, the prediction performance of different models at the center level was simulated when there were different degrees of clustering effects, including the difference of discrimination and calibration in different scenarios, and the change trend of this difference at different event rates was compared. ResultsAt the center level, different models, except RF, showed little difference in the discrimination of different scenarios under the clustering effect, and the mean of their C-index changed very little. When using multi-center highly clustered data for forecasting, the marginal forecasts (M.RI, SLR and RF) had calibrated intercepts slightly less than 0 compared with the conditional forecasts, which overestimated the average probability of prediction. RF performed well in intercept calibration under the condition of multi-center and large samples, which also reflected the advantage of machine learning algorithm for processing large sample data. When there were few multiple patients in the center, the FEM made conditional predictions, the calibrated intercept was greater than 0, and the predicted mean probability was underestimated. In addition, when the multi-center large sample data were used to develop the prediction model, the slopes of the three conditional forecasts (FEM, A.RI, C.RI) were well calibrated, while the calibrated slopes of the marginal forecasts (M.RI and SLR) were greater than 1, which led to the problem of underfitting, and the underfitting problem became more prominent with the increase in the central aggregation effect. In particular, when there were few centers and few patients, overfitting of the data could mask the difference in calibration performance between marginal and conditional forecasts. Finally, the lower the event rate the central clustering effect at the central level had a more pronounced impact on the forecasting performance of the different models. ConclusionThe highly clustered multi-center data are used to construct the model and apply it to the prediction in a specific environment. RI and FEM can be selected for conditional prediction when the number of centers is small or the difference between centers is large due to different incidence rates. When the number of hearts is large and the sample size is large, RI can be selected for conditional prediction or RF for edge prediction.
ObjectiveTo explore the influencing factors for Hook-wire precise positioning under CT guidance, determine the best positioning management strategy, and develop Nomogram prediction model. Methods Patients who underwent CT-guided Hook-wire puncture positioning in our hospital from July 2018 to November 2022 were selected. They were randomly divided into a training set and a validation set with a ratio of 7 : 3. Clinical data of the patients were analyzed, and the logistic analysis was used to screen out the risk factors that affected CT-guided Hook-wire precise positioning for the training set. The Nomogram prediction model was constructed according to the risk factors, and the goodness of fit test and clinical decision curve analysis were performed. ResultsA total of 199 patients with CT-guided Hook-wire puncture were included in this study, including 72 males and 127 females, aged 25-83 years. There were 139 patients in the training set and 60 patients in the validation set. In the training set, 70 patients were accurately located, with an incidence of 50.36%. Logistic regression analysis showed that height [OR=3.46, 95%CI (1.44, 8.35), P=0.006], locating needle perpendicular to the horizontal plane [OR=3.40, 95%CI (1.37, 8.43), P=0.008], locating needle perpendicular to the tangent line of skin surface [OR=6.01, 95%CI (2.38, 15.20), P<0.001], CT scanning times [OR=3.03, 95%CI (1.25, 7.33), P=0.014], occlusion [OR=10.56, 95%CI (1.98, 56.48), P=0.006] were independent risk factors for CT-guided Hook-wire precise localization. The verification results of the Nomogram prediction model based on these independent risk factors showed that the area under the receiver operating characteristic curve (AUC) was 0.843 [95%CI (0.776, 0.910)], and the predicted value of the correction curve was basically consistent with the measured value. The AUC of the model in the validation set was 0.854 [95%CI (0.759, 0.950)]. The decision curves showed that when the threshold probability was within the range of 8%-85% in the training set and 18%-99% in the validation set, there was a high net benefit value. Conclusion Height, the locating needle perpendicular to the horizontal plane, the locating needle perpendicular to the tangent line of skin surface, number of CT scans, and occlusion are independent risk factors for CT-guided Hook-wire accurate localization. The Nomogram model established based on the above risk factors can accurately assess and quantify the risk of CT-guided Hook-wire accurate localization.
ObjectiveTo explore the influencing factors affecting lymph nodes posterior to the right recurrent laryngeal nerve (LN-prRLN) metastasis in papillary thyroid carcinoma (PTC) and construct a clinical nomogram prediction model to provide a reference for LN-prRLN dissection decision-making. MethodsThe clinical data of PTC patients admitted to the General Surgery Department of Baoding No.1 Central Hospital from January 2021 to December 2023 were retrospectively analyzed. Among them, 325 patients underwent LN-prRLN dissection, and they were divided into non-metastatic group (269 cases) and metastasis group (56 cases) according to the presence or absence of LN-prRLN metastasis. By comparing the differences of clinical and pathological characteristics between the two groups, the risk factors of LN-prRLN metastasis were analyzed and discussed, and then the nomogram prediction model of LN-prRLN metastasis was constructed with the risk factors, and the effectiveness of the model was verified and evaluated. ResultsIn 325 patients, 56 cases (17.23%) occurred LN-prRLN metastasis. The results of univariate analysis showed that gender, extrathyroidal extension, lymph nodes anterior to right recurrent laryngeal nerve (LN-arRLN) metastasis, location of cancer focus, and lateral lymph node metastasis (LLNM) were related to LN-prRLN metastasis of PTC (P<0.05). Multivariate binary logistic regression analysis showed that male [OR=3.878, 95%CI (1.192, 12.615)], with extrathyroidal extension [OR=2.836, 95%CI (1.036, 7.759)], with LN-arRLN metastasis [OR=10.406, 95%CI (3.225, 33.926)], right cancer focus [OR= 5.632, 95%CI (1.812, 17.504)] and with LLNM [OR=3.426, 95%CI (1.147, 10.231)] were the risk factors of LN-prRLN metastasis. Receiver operating characteristic curves of nomogram prediction model based on the above risk factors showed that the area under the curve was 0.865, 95%CI was (0.795, 0.934), Jordan index was 0.729, sensitivity was 0.873, and specificity was 0.856, which had higher prediction value. The C-index of Bootstrap test was 0.840 [95%CI (0.755, 0.954) ]. Calibration curves showed that predictive value close to the ideal curve, had good consistency. The clinical decision curve analysis showed that the model had good clinical prediction effect on LN-prRLN metastasis of PTC. ConclusionsMale, extrathyroidal extension, LN-arRLN metastasis, right cancer focus and LLNM are independent risk factors for LN-prRLN metastasis of PTC. The nomogram prediction model based on the above independent risk factors has high discrimination and calibration, which is helpful for surgeons to make clinical decisions.
Objective To investigate the risk factors for Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections, and construct a clinical model for predicting the risk of CRKP infections. Methods A retrospective analysis was performed on Klebsiella pneumoniae infection patients hospitalized in the Third Hospital of Hebei Medical University from May 2020 to May 2021. The patients were divided into a CRKP group (117 cases) and a Carbapenem-sensitive Klebsiella pneumoniae (CSKP) group (191 cases). The predictors were screened by full subset regression using R software (version 4.3.1). The truncation values of continuous data were determined by Youden index. Nomogram and score table model for CRKP infections risk prediction was constructed based on binary logistic regression. The receiver operator characteristic (ROC) curve and area under curve (AUC) were used to evaluate the accuracy of models. Calibration curve and decision curve were used to evaluate the performance of models. Results308 patients with Klebsiella pneumoniae infections were included. A total of 8 predictors were selected by using full subset regression and truncation values were determined according to Youden index: intensive care unit (ICU) stay at time of infection>2 days, male, acute physiology and chronic health evaluation Ⅱ (APACHEⅡ) score>15 points, hospitalization stay at time of infection>10 days, any history of Gram-negative bacteria infection in the last 6 months, heart disease, lung infection, antibiotic exposure history in the last 6 months. The AUC of CRKP prediction risk curve model was 0.811 (95%CI 0.761 - 0.860). When the optimal cut-off value of the constructed CRKP prediction risk rating table was 6 points, the AUC was 0.723 (95%CI 0.672 - 0.774). The Bootstrap method was used for internal repeated sampling for 1000 times for verification. The model calibration curve and Hosmer-Lemeshow test (P=0.618) showed that these models have good calibration degree. The decision curve showed that these models have good clinical effectiveness. Conclusion The prediction model of CRKP infections based on the above 8 risk factors can be used as a risk prediction tool for clinical identification of CRKP infections.
Acute lung injury is one of the common and serious complications of acute aortic dissection, and it greatly affects the recovery of patients. Old age, overweight, hypoxemia, smoking history, hypotension, extensive involvement of dissection and pleural effusion are possible risk factors for the acute lung injury before operation. In addition, deep hypothermia circulatory arrest and blood product infusion can further aggravate the acute lung injury during operation. In this paper, researches on risk factors, prediction model, prevention and treatment of acute aortic dissection with acute lung injury were reviewed, in order to provide assistance for clinical diagnosis and treatment.
ObjectiveTo analyze the risk factors for esophagogastric anastomotic leakage (EGAL) after esophageal cancer surgery, and to establish a risk prediction model for early prevention and treatment.MethodsClinical data of patients undergoing esophagectomy in our hospital from January 2013 to October 2020 were retrospectively analyzed. The independent risk factors for postoperative EGAL were analyzed by univariate and multivariate logistic regression analyses, and a clinical nomogram prediction model was established. According to whether EGAL occurred after operation, the patients were divided into an anastomotic fistula group and a non-anastomotic fistula group.ResultsA total of 303 patiens were enrolled, including 267 males and 36 females with a mean age of 62.30±7.36 years. The incidence rate of postoperative EGAL was 15.2% (46/303). The multivariate logistic regression analysis showed that high blood pressure, chronic bronchitis, peptic ulcer, operation way, the number of lymph node dissected, anastomotic way, the number of intraoperative chest drainage tube, tumor location, no-supplementing albumin in the first three days after operation, postoperative pulmonary infection, postoperative use of bronchoscope were the independent risk factors for EGAL after esophageal cancer surgery (P<0.05). A prognostic nomogram model was established based on these factors with the area under the receiver operating characteristic curve of 0.954 (95%CI 0.924-0.975), indicating a high predictive value.ConclusionThe clinical prediction model based on 11 perioperative risk factors in the study has a good evaluation efficacy and can promote the early detection, diagnosis and treatment of EGAL.
ObjectiveTo investigate the factors associated with unplanned readmission within 30 days after discharge in adult patients who underwent coronary artery bypass grafting (CABG) and to develop and validate a risk prediction model. MethodsA retrospective analysis was conducted on the clinical data of patients who underwent isolated CABG at the Nanjing First Hospital between January 2020 and June 2024. Data from January 2020 to August 2023 were used as a training set, and data from September 2023 to June 2024 were used as a validation set. In the training set, patients were divided into a readmission group and a non-readmission group based on whether they had unplanned readmission within 30 days post-discharge. Clinical data between the two groups were compared, and logistic regression was performed to identify independent risk factors for unplanned readmission. A risk prediction model and a nomogram were constructed, and internal validation was performed to assess the model’s performance. The validation set was used for validation. ResultsA total of 2 460 patients were included, comprising 1 787 males and 673 females, with a median age of 70 (34, 89) years. The training set included 1 932 patients, and the validation set included 528 patients. In the training set, there were statistically significant differences between the readmission group (79 patients) and the non-readmission group (1 853 patients) in terms of gender, age, carotid artery stenosis, history of myocardial infarction, preoperative anemia, and heart failure classification (P<0.05). The main causes of readmission were poor wound healing, postoperative pulmonary infections, and new-onset atrial fibrillation. Multivariable logistic regression analysis revealed that females [OR=1.659, 95%CI (1.022, 2.692), P=0.041], age [OR=1.042, 95%CI (1.011, 1.075), P=0.008], carotid artery stenosis [OR=1.680, 95%CI (1.130, 2.496), P=0.010], duration of first ICU stay [OR=1.359, 95%CI (1.195, 1.545), P<0.001], and the second ICU admission [OR=4.142, 95%CI (1.507, 11.383), P=0.006] were independent risk factors for unplanned readmission. In the internal validation, the area under the curve (AUC) was 0.806, and the net benefit rate of the clinical decision curve analysis (DCA) was >3%. In the validation set, the AUC was 0.732, and the DCA net benefit rate ranged from 3% to 48%. ConclusionFemales, age, carotid artery stenosis, duration of first ICU stay, and second ICU admission are independent risk factors for unplanned readmission within 30 days after isolated CABG. The constructed nomogram demonstrates good predictive power.
ObjectiveTo explore the risk factors for postoperative respiratory failure (RF) in patients with esophageal cancer, construct a predictive model based on the least absolute shrinkage and selection operator (LASSO)-logistic regression, and visualize the constructed model. MethodsA retrospective analysis was conducted on patients with esophageal cancer who underwent surgical treatment in the Department of Thoracic Surgery, Sun Yat-sen University Cancer Center Gansu Hospital from 2020 to 2023. Patients were divided into a RF group and a non-RF (NRF) group according to whether RF occurred after surgery. Clinical data of the two groups were collected, and LASSO-logistic regression was used to optimize feature selection and construct the predictive model. The model was internally validated by repeated sampling 1000 times based on the Bootstrap method. ResultsA total of 217 patients were included, among which 24 were in the RF group, including 22 males and 2 females, with an average age of (63.33±9.10) years; 193 were in the NRF group, including 161 males and 32 females, with an average age of (62.14±8.44) years. LASSO-logistic regression analysis showed that the percentage of forced expiratory volume in one second/forced vital capacity (FEV1/FVC) to predicted value (FEV1/FVC%pred) [OR=0.944, 95%CI (0.897, 0.993), P=0.026], postoperative anastomotic fistula [OR=4.106, 95%CI (1.457, 11.575), P=0.008], and postoperative lung infection [OR=3.776, 95%CI (1.373, 10.388), P=0.010] were risk factors for postoperative RF in patients with esophageal cancer. Based on the above risk factors, a predictive model was constructed, with an area under the receiver operating characteristic curve of 0.819 [95%CI (0.737, 0.901)]. The Hosmer-Lemeshow test for the calibration curve showed that the model had good goodness of fit (P=0.527). The decision curve showed that the model had good clinical net benefit when the threshold probability was between 5% and 50%. Conclusion FEV1/FVC%pred, postoperative anastomotic fistula, and postoperative lung infection are risk factors for postoperative RF in patients with esophageal cancer. The predictive model constructed based on LASSO-logistic regression analysis is expected to help medical staff screen high-risk patients for early individualized intervention.
ObjectiveTo construct a model for predicting prognosis risk in patients with pancreatic malignancy (PM).MethodsThe clinicopathological data of 8 763 patients with PM undergone resection between 2010 and 2015 were collected and analyzed by SEER*Stat (v8.3.5) and R software, respectively. The univariate and multivariate Cox proportional hazard regression analysis were used to analyze the factors for predicting prognosis outcome risk and constructed the nomograms of patients with PM, respectively. Kaplan-Meier method was used to evaluate the survival of patients according to relevant factors and the high risk group and low risk group of patients with PM. The discriminative ability and calibration of the nomograms to predict overall survival were tested by using C-index, area under ROC curve (AUC) and calibration plots.ResultsThe multivariate Cox proportional hazard regression analysis showed that age, T staging, N staging, M staging, histological type, the differentiation, number of regional lymph node dissection, chemotherapy, and radiotherapy were independent factors for predicting the prognosis of patients with PM (P<0.05). Based on regression analysis of patients with PM, a nomograms model for predicting the risk of patients with PM was established, including age, T staging, N staging, M staging, histological type, the differentiation, tumor location, type of surgery, number of regional lymph node dissection, chemotherapy, and radiotherapy. The discriminative ability and calibration of the nomograms revealed good predictive ability as indicated by the C-index (0.747 for modeling group and 0.734 for verification group). The 3- and 5-year survival AUC values of the modeling group were 0.766 and 0.781, and the validation group were 0.758 and 0.783, respectively. The calibration plots showed that predictive value of the 3- and 5-year survival were close to the actual values in both modeling group and the verification group. ConclusionsIndependent predictors of survival risk after curative-intent surgery for PM were selected to create nomograms for predicting overall survival. The nomograms provide a basis for judging the prognosis of PM patients.