Membrane guided tissue regeneration is new biological concept. The basic theory of this concept includes the belief that during the healing process of wound, the different cells will show different speed of cell migration and regeneration in the wound. If an appropriate membrane being placed to form a mechanical barrier, so that only the needed cells can grow into that area and prevent others from going in, thus resulting in the creation of a guided area where the needed cells can undergo proliferation and differentiation under protection in completing an ideal tissue regeneration and repair. In this article, the experimental researches on the application of membrane guided tissue regeneration in the repair of tubular bone defects, skull defects and faciomaxillary defects were reviewed from literatures, and the degradable and non-degradable materials were introduced, particularly. The pros and cons of this method and the materials were evaluated. It is believed that this technique will push forward the progress in bone biology and reconstructive surgery.
OBJECTIVE: To evaluate the nerve regeneration after implantation of chitin tubes containing nerve growth factor(NGF) in the rabbit facial nerve. METHODS: Bilateral 8 mm defect of superior buccal divisions of the facial nerves were made in 16 New Zealand rabbits. Chitin tubes containing NGF were implanted into the gaps, and autologous nerves were implanted into the right gaps as control. The nerve regeneration was evaluated with electrophysiological and ultrastructural examination after 8 and 16 weeks of operation. RESULTS: Chitin tubes containing NGF successfully induced the nerve regeneration, regularly arranged myelinated and unmyelinated axons could be observed across the 8 mm gaps, and the myelin sheath was thick with clear lamellar structure at 8 weeks after operation, The regenerated nerve fibers increased and were more mature at 16 weeks after operation. There were no significant difference in electrical impulse conduction velocity through the neural regeneration between the experimental and control sides (P gt; 0.05). CONCLUSION: Chitin tubes containing NGF can provide optimal conditions for regeneration of rabbit facial nerve.
Objective To study the biological activities ofthe nerve regeneration conditioned fluid (NRCF), especially to further separateand identify the protein bands of the relative molecular mass of (232-440)×103. Methods The silicone nerve regeneration chambers were implanted between the cut ends of the sciatic nerve in 6 New Zealand white rabbits (weight, 1.8-2.5 kg). The proteins in NRCF were separated by the native-polycrylamide gel electrophoresis (Native-PAGE), the protein bands of the relative molecular mass of (232-440)×103 were analyzed by the Shotgun technique, liquid chromatography, and mass spectrometry. Results The Native-PAGE result showed that there was 1 protein band of the relative molecular mass over 669×103, (232-440)×103 and (140-232)×103,respectively, and 6 bands of the relative molecular mass of (67-140)×103.Besides, 54 proteins were identified with at least 2 distinct peptides in 1 protein band of the relative molecular mass of (232-440)×103, including 4 unnamed protein products, mainly at the isoelectric points of 5.5-8.0 and of the relative molecular mass of (10-40)×103. Based on their functions in the protein database, allthe identified proteins in this study were classified into the following 5 groups: conjugated protein (43%), transport protein (30%), enzyme (6%), signal transducer (4%), and molecular function-unknown protein (17%). At the subcellular localization of the identified proteins, there was mainly a secreted protein (63%), and the remaining proteins were localized in the membrane and cytoplasm. Conclusion Native-PAGE and the Shotgun technique can effectively separate and identify proteins from NRCF, and can identify the components of the protein band of the relative molecular mass of (232-440)×103 and provide basicinformation on the unnamed protein products in NRCF.
ObjectiveTo investigate the effects of bone marrow mesenchymal stem cells (BMSCs) transplantation for treating spinal cord injury (SCI) in rat and the cytokine expression changes in the local injury tissues.
MethodsBMSCs were separated from Sprague Dawley (SD) rat and cultured with the whole bone marrow culture method. rAd-EGFP was used to transfect the 5th generation BMSCs for green fluorescent protein (GFP) label. Twelve SD rats were randomly divided into experimental group (n=6) and control group (n=6). After the T10 SCI model was established with Allen's impact device in 2 groups, 1×106 GFP-labeled BMSCs and PBS were administered by subarachnoid injection in situ in experimental group and control group, respectively. Basso-Beattie-Bresnahan (BBB) score was used to detect the motor function at immediat, 1, 2, 3, 4, and 5 weeks after SCI. At 5 weeks, the spinal cord tissues were harvested for the histological and immunofluorescent staining examinations to measure the expressions of neural marker molecules, including Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific nuclear protein (NeuN). Cytokine was analyzed with antibody array.
ResultsAt 5 weeks, 2 rats died of urinary tract infection in 2 groups respectively, the other rats survived to the end of experiment. BBB score of experimental group was significantly higher than that of control group at 1, 2, 3, 4, and 5 weeks (P < 0.05). At 5 weeks, histological results showed that there were many cells with regular arrangement in the experimental group; there were less cells with irregular arrangement in the control group. Compared with the control group, Nestin and NeuN expressions significantly increased (P < 0.05), and GFAP expression significantly decreased (P < 0.05) in the experimental group. Leptin and ciliary neurotrophic factor levels were higher in the experimental group than the control group, but granulocyte-macrophage colony-stimulating factor, tumor necrosis factorα, interleukin 1β, and tissue inhibitor of metalloproteinases 1 levels were lower in the experimental group than the control group.
ConclusionBMSCs transplantation can improve survival and regeneration of nerve cells and enhances the recovery of nerve function by regulating secretion of cytokines from grafted BMSCs.
ObjectiveTo determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration. MethodsHair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups. ResultsThe isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences (P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant (P<0.05). ConclusionLentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.
Objective To summarize the research progress of bio-derived materials used for bladder regeneration and repair. MethodsThe recent domestic and foreign sutudies on bio-derived materials used for bladder regeneration and repair, including classification, morphology optimization process, tissue regeneration strategies, and relevant clinical trials, were summarized and analyzed. ResultsNumerous types of bio-derived materials are employed in bladder regeneration and repair, characterized by their low immunogenicity and high inducible activity. Surface modification, gelation, and other morphology optimization process have significantly broadened the application scope of bio-derived materials. These advancements have effectively addressed complications, such as perforation and urolith formation, that may arise during bladder regeneration and repair. The strategy of tissue regeneration utilizing bio-derived materials, targeting the regeneration of bladder epithelium, smooth muscle, blood vessels, and nerves, offers a novel approach to achieving functional regeneration of bladder. Bio-derived materials show great promise for use in bladder regeneration and repair, yet the results from clinical trials with these materials have been less than satisfactory. ConclusionBio-derived materials are widely used in bladder regeneration and repair due to the good biocompatibility, low immunogenicity, and degradable properties, yet face a series of problems, and there are no commercialized bladder tissue engineering grafts used in clinical treatment.
OBJECTIVE: To study the effects of Schwann cell cytoplasmic derived neurotrophic proteins (SDNF) on the regeneration of peripheral nerve in vivo. METHODS: Ninety adult SD rats were chosen as the experimental model of degenerated muscle graft with vascular implantation bridging the 10 mm length of right sciatic nerve. They were divided randomly into three groups, 30 SD rats in each groups. 25 microliters of 26 ku SDNF (50 micrograms/ml, group A), 58 ku SDNF (50 micrograms/ml, group B) and normal saline(group C) were injected respectively into the proximal, middle and distal part of the degenerated muscle grafts at operation, 7 and 14 days postoperatively. The motorial function recovery assessment was carried out every 15 days with the sciatic nerve function index(SFI) after 15 days to 6 months of operation. Histological and electrophysiological examination of regenerating nerve were made at 1, 3 and 6 months postoperatively. RESULTS: There were significant statistic differences between the both of experimental groups(group A and B) and control group(group C) in the respects of the histological, electrophysiological examination and SFI(P lt; 0.01). CONCLUSION: The 26 ku SDNF and 58 ku SNDF can improve the regeneration of the injured peripheral nerve in vivo.
OBJECTIVE To observe the degeneration and regeneration of the Meissner’s corpuscles after implanted sensory nerve into the denervated monkey’s fingers under electron microscope. METHODS The two finger nerves of the monkey’s fingers were denervated. Afterwards, one finger nerve was cut off, and the other was reimplanted into the denervated finger. After 1, 3, 5, 8 and 12 months, the finger skin was cut off and observed under electron microscope. RESULTS The degenerative changes of nerve ending in Meissner’s corpuscles were observed after 1 month of denervation, and the basic structure of the corpuscles had no obvious changes. After 3 months, the axons of corpuscles were disappeared, and the volume of corpuscles was shrunk. The basic structure of nerves was disappeared, and the lemmocyte and neurolemma plate were changed after 5 months. The collagen fibrils in the corpuscles were gradually increased in 8 months, the endoneurial structure and interneurial matrix were completely disappeared and replaced by collagen fibrils in 12 months. After 3 months of nerve implantation, unmyelinated nerve fibers were appeared and grew into the corpuscles. A part of corpuscles innervated in 5 months. Most of corpuscles innervated and myelinated nerve fibers were observed in 8 months. And in 12 months, corpuscles innervated to normal level. CONCLUSION The implantative sensory nerve by means of reinnervating the original corpuscles and regenerating new corpuscles could innervate the degenerative Meissner’s corpuscles.
Objective To study the effect of autogenous bone marrow on guided bone regeneration (GBR),and evaluate the repairing ability of GBR in bone defect with autogenous bone marrow. Methods Ten mm segmental defects were produced in both radii of 18 rabbits. The defect was bridged with a silicon tube. Autogenous bone marrow was injected into the tube on the experimental group at 0, 2,4 weeks after operation, and peripheralblood into the control group at thesame time. The X-ray, gross, histological and biochemical examinations were observed invarious times. Results The new bone formation of experimental group was prior to that of control group; calcium and alkaline phosphatase of experimental groupwere higher than those of control group. The experimental group had all been healed at the tenth week, but no one healed in control group. Conclusion It can be conclude that autogenous bone marrow can stimulate bone formation and facilitate GBR in bone defect.
Bone morphogenetic protein (BMPs) has been so far regarded as one of the highly potent osteoinductive growth factors. Recombinant human bone morphogenetic proteins have been utilized extensively in the disciplines of orthopedics, stomatology, etc. For clinical application, BMPs are usually loaded in carriers with a controlled-release system, to maintain concentration to induce de novo bone formation at the desired site. In this article, the research advancements of the carriers and release systems of BMP are reviewed.