Objective To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 μg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group (P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group (P<0.05); the bFGF group showed an increase compared to model group (P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant (P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1β, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group (P<0.05). The above indexes in bFGF group significantly improved when compared with model group (P<0.05). Conclusion bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.
ObjectiveTo evaluate whether long frozen elephant trunk (FET) increases the risk of spinal cord injury in patients with acute type A aortic dissection.MethodsFrom 2018 to 2019, 172 patients with acute type A aortic dissection were treated in Guangdong Provincial People’s Hospital. They were divided into two groups according to the length of FET: patients treated with stents of 100 mm in length were enrolled into a short FET group, and those with stents of 150 mm in length into a long FET group. There were 124 patients in the short FET group, including 108 (87.1%) males and 16 (12.9%) females with a mean age of 51.8±7.9 years. There were 48 patients in the long FET group, including 44 (91.7%) males and 4 (8.3%) females with a mean age of 50.6±9.7 years. The clinical data and prognosis of the patients were analyzed.ResultsThe mean distal stent graft was at the level of T 8.5±0.7 in the long FET group, and at the level of T 6.8±0.6 in the short FET group (P=0.001). Sixteen patients died after operation in the two groups, including 13 (10.5%) in the short FET group and 3 (6.2%) in the long FET group (P=0.561). There were 7 patients of spinal cord injury in the two groups, including 6 (4.8%) in the short FET group and 1 (2.2%) in the long FET group (P=0.675). There was no statistical difference in other complications between the two groups. The follow-up time was 16.7 (1-30) months. During the follow-up, 2 patients died in the long FET group and 5 died in the short FET group. No new spinal cord injury or distal reintervention occurred during the follow-up.ConclusionLong FET does not increase the incidence of spinal cord injury in patients with acute type A aortic dissection.
ObjectiveTo systematically profile and characterize the circular RNA (circRNA) and microRNA (miRNA) expression pattern in the lesion epicenter of spinal tissues after traumatic spinal cord injury (TSCI) and predict the structure and potential functions of the regulatory network.MethodsForty-eight adult male C57BL/6 mice (weighing, 18-22 g) were randomly divided into the TSCI (n=24) and sham (n=24) groups. Mice in the TSCI group underwent T8-10 vertebral laminectomy and Allen’s weight-drop spinal cord injury. Mice in the sham group underwent the same laminectomy without TSCI. The spinal tissues were harvested after 3 days. Some tissues were stained with HE staining to observe the structure. The others were used for sequencing. The RNA-Seq, gene ontology (GO) analysis, and circRNA-miRNA network analyses (TargetScan and miRanda) were used to profile the expression and regulation patterns of network of mice models after TSCI.ResultsHE staining showed the severe damage to the spinal cord in TSCI group compared with sham group. A total of 17 440 circRNAs and 1 228 miRNAs were identified. The host gene of significant differentially expressed circRNA enriched in the cytoplasm, associated with positive regulation of transcription and protein phosphorylation. mmu-miR-21-5p was the most significant differentially expressed miRNA after TSCI, and circRNA6730 was predicted to be its targeted circRNA. Then a potential regulatory circRNA-miRNA network was constructed.ConclusionThe significant differentially expressed circRNAs and miRNAs may play important roles after TSCI. A targeted interaction network with mmu-miR-21-5p at the core of circRNA6730 could provide basis of pathophysiological mechanism, as well as help guide therapeutic strategies for TSCI.
Objective To investigate the expression pattern of hypoxia-inducible factor 1α (HIF-1α) in experimental secondary spinal cord injury (SSCI) in rats and its potential effects on SSCI. Methods A total of 66 SD rats (female or male) with weight (250 ± 20) g were randomly divided into 3 groups: normal control group (group A, n=6), pseudo injury group (group B, n=6), and spinal cord injury (SCI) group (group C, n=54). In group A, no treatment was given as normal control. In groupB, only laminectomy was appl ied. In group C, laminectomy was appl ied and static compression model of SCI was built at T10 level. The expression of HIF-1α was measured with HE and immunohistochemical staining in groups A, B (1 hour after pseudo injury), and C (1, 3, 6, 12 hours and 1, 2, 3, 7, 14 days after SCI). Results All rats survived to the end of the experiment. HE staining showed that the spinal tissue of groups A and B were dense and the nucleus were round and big with l ight staining and clear nucleolus. The injured neuron at 1-12 hours after SCI of group C presented pyknosis and deep eosin staining. The swelling axon with bubbles and the disintegrated and disorganized medullary sheath in white matter appeared at 1-3 days after SCI. The hyperplasia of gl ial cells were obvious and gray matter cells were broken and apoptosis with cavities in injured spinal segment was observed at 7 and 14 days after SCI. Immunohistochemical staining showed that HIF-1α was poorly expressed in group A and increased a l ittle in group B. The positive expression in group C increased at 3 hours after SCI, which was found in spinal cord anterior horn neurons and a small amount of gangl ion cells. It reached peak at 1 day, maintained at a high level during 1-3 days and then decl ined. At 14 days, it appeared only in a small amount of gangl ion cells of white matter. There was no significant difference in the number of HIF-1α positive cells between groups A and B (t=1.325, P=0.137). The number of HIF-1α positive cells at each time point in group C was more than those in groups A and B (P lt; 0.05), and there were significant differences between all time points in group C (P lt; 0.05). Conclusion The expression of HIF-1α increases after SCI, it is related to the ischemia hypoxia after SSCI, and the expression pattern was correlated with the injury time.
This article investigates the role of AMP-activated protein kinase (AMPK) and its downstream signaling targets in mediating cellular processes such as autophagy, apoptosis, and inflammation, offering insights into how acupuncture may treat common central nervous system (CNS) diseases, including ischemic stroke, spinal cord injury, Parkinson disease, and Alzheimer disease. AMPK and its downstream effectors are pivotal in the signaling pathways that underlie the pathophysiology of CNS diseases. These pathways are implicated in a variety of cellular responses that contribute to the progression of neurological disorders. During CNS injury, AMPK can be activated through phosphorylation, triggering the regulation of downstream molecules and exerting protective effects on neuronal function. Acupuncture has been shown to promote neuroprotection and enhance recovery in CNS diseases through multiple mechanisms, one of which involves the activation of AMPK-related signaling pathways. Nevertheless, numerous unresolved challenges remain in this research field.
ObjectiveTo investigate the effect of saikosaponin a (SSa) on the levels of immune inflammation in rats with acute spinal cord injury and its possible mechanism.MethodsSeventy-two Sprague Dawley rats (weighing, 220-250 g) were randomly divided into sham operation group (group A), spinal cord injury group (group B), and SSa treatment group (group C) respectively, 24 rats in each group. The spinal cord injury model was induced by using the Allen’s method in groups B and C; the spinous process and vertebral plate at both sides were cut off by lamina excision to expose the spinal cord in group A. The rats were given intraperitoneal injection of 10 mg/kg SSa in group C and equal volume of normal saline in group B at immediate after injury. The spinal cord tissue was harvested from 18 rats of each group at 24 hours after operation to measure the levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) by ELISA, to detect the expressions of nuclear factor κB (NF-κB) P65, NF-κB P-P65, and aquaporin 4 (AQP4) by Western blot and to observe the morphology of spinal cord by HE staining. The motor function of the lower limbs was evaluated by BBB score and tiltboard experiment in 6 rats at 1, 3, 7, 14, 21, and 28 days after injury.ResultsThe BBB score and tiltboard experiment maximum angle were significantly higher in group A than groups B and C at each time point (P<0.05) and in group C than group B at 14, 21, and 28 days after operation (P<0.05). ELISA test showed that the concentrations of TNF-α and IL-6 were significantly lower in group A than groups B and C, and in group C than group B (P<0.05). Western blot results showed that the protein expression levels of NF-κB P65, NF-κB P-P65, and AQP4 were significantly lower in group A than groups B and C, and in group C than group B (P<0.05). HE staining demonstrated normal neurons of the spinal cord and no obvious lesion in group A; neuronal cells were observed in the injured area of group B, with hemorrhage, neutrophil infiltration, and nerve cell edema in the injured area; the neuronal cells were visible in the spinal cord of group C, with microglia mild hyperplasia, and the pathological changes were improved when compared with group B.ConclusionSSa has neuroprotective effects on acute spinal cord injury in rats by inhibiting NF-κB signaling pathway and AQP4 protein expression and reducing inflammation response and edema.
Objective To explore the related factors of upper urinary tract deterioration (UUTD) in spinal cord injury patients using intermittent catheterization (IC-SCI) in the community. Methods Patients with spinal cord injury in the Chinese community were selected for investigation between August 3 and August 31, 2020. The included patients were divided into UUTD group and non-UUTD group. The basic information, intermittent catheterization practices, and urinary complications were compared between the two groups. Logistic regression was used to analyze the risk factors contributing to UUTD. Results A total of 431 patients were surveyed. Among them, there were 310 males and 121 females, 246 cases in the non-UUTD group and 185 cases in the UUTD group. There were statistically significant differences in the disease duration, gender, etiology, urinary incontinence, urinary tract infection, bladder calculi and nephrolithiasis between the two groups (P<0.05); there was no statistically significant difference in the other indicators between the two groups (P>0.05). The results of logistic regression analysis showed that urinary tract infection [odds ratio (OR)=3.229, 95% confidence interval (CI) (1.706, 6.110), P<0.001], nephrolithiasis [OR=4.846, 95%CI (2.617, 8.973), P<0.001], and urinary incontinence [OR=2.345, 95%CI (1.116, 4.925), P=0.024] were risk factors for UUTD. Conclusion Urinary tract infection, nephrolithiasis and urinary incontinence are independent risk factors for UUTD in community-based IC-SCI patients and deserve attention for preventive strategies.
ObjectiveTo assess whether expanding the landing zone of frozen elephant trunk (FET) increases the risk of spinal cord injury in patients with acute type A aortic dissection. MethodsPatients with acute type A aortic dissection who were treated in Guangdong Provincial People’s Hospital from 2017 to 2020 were collected. They were divided into two groups according to the landing zone of FET by the image diagnosis of postoperative chest X-ray or total aorta CT angiography, including a Th9 group which defined as below the eighth thoracic vertebral level, and a Th8 group which was defined as above or equal to the eighth thoracic vertebral level. Using the propensity score matching (PSM) method, the preoperative and intraoperative data of two groups were matched with a 1∶2 ratio. The prognosis of the two groups after PSM was analyzed. Results Before PSM, 573 patients were collected, including 58 patients in the Th9 group and 515 patients in the Th8 group. After PSM, 174 patients were collected, including 58 patients in the Th9 group (46 males and 12 females, with an average age of 47.91±9.92 years), and 116 patients in the Th8 group (93 males and 23 females, with an average age of 48.01±9.53 years). There were 8 patients of postoperative spinal cord injury in the two groups after PSM, including 5 (4.31%) patients in the Th8 group and 3 (5.17%) patients in the Th9 group (P=0.738). In the Th8 group, 2 patients had postoperative transient paresis and recovered spontaneously after symptomatic treatment, and 1 patient had postoperative paraplegia with cerebrospinal fluid drainage. After 3 days, the muscle strength of both lower limbs gradually recovered after treatment. There was no statistical difference in complications between the two groups (P>0.05). ConclusionExpanding the landing zone of FET does not increase the risk of spinal cord injury in patients with acute type A aortic dissection. However, the sample size is limited, and in the future, multicenter large-scale sample size studies are still needed for verification
ObjectiveTo investigate the expression changes and the repair effect of mitogen and stress- activated protein kinase 1 (MSK1) on spinal cord injury (SCI) in rats.MethodsOne hundred and twenty male Sprague Dawley (SD) rats (weighing 220-250 g) were used for the study, 70 of them were randomly divided into sham-operation group and SCI group (n=35), the rats in SCI group were given SCI according to Allen’s method, and the sham-operation group only opened the lamina without injuring the spinal cord; spinal cord tissue was collected at 8 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after invasive treatment, each group of 5 rats was used to detect the expression of MSK1 and proliferating cell nuclear antigen (PCNA) by Western blot assay. Another 20 SD rats were grouped by the same method as above (n=10). In these rats, a negative control lentiviral LV3NC dilution was injected at a depth of approximately 0.8 mm at the spinal cord T10 level. The results of transfection at 1, 3, 5, 7, and 14 days after injection were observed under an inverted fluorescence microscope to determine the optimal transfection time of the virus. The other 30 SD rats were randomly divided into group A with only SCI, group B with a negative control lentiviral LV3NC injected after SCI, and group C with MSK1 small interfering RNA (siRNA) lentivirus injected after SCI, with 10 rats each group. The Basso, Beatlie, Bresnahan (BBB) score of hind limbs was measured at 1, 3, 5, 7, and 14 days after treatment; spinal cord tissue collected at the optimal time point for lentivirus transfection was detected the expression changes of MSK1 and PCNA by Western blot and the localization by immunofluorescence staining of MSK1 and PCNA proteins.ResultsWestern blot assay showed that there was no significant changes in the expression of MSK1 and PCNA at each time points in the sham-operation group. In the SCI group, the expression of MSK1 protein was gradually decreased from 8 hours after injury to the lowest level at 3 days after injury, and then gradually increased; the expression change of PCNA protein was opposite to MSK1. The expression of MSK1 in SCI group was significantly lower than that in the sham-operation group at 1, 2, 3, and 5 days after injury (P<0.05), and the expression of PCNA protein of SCI group was significantly higher than that of the sham-operation group at 8 hours and 1, 2, 3, 5, and 7 days after injury (P<0.05). The fluorescence expression of both the SCI group and the sham-operation group has be found and peaked at 7 days. There was a positive correlation between fluorescence intensity and time in 7 days after transfection. With the prolongation of postoperative time, the BBB scores of groups A, B, and C showed a gradually increasing trend. The BBB score of group C was significantly lower than those of groups A and B at 5, 7, and 14 days after treatment (P<0.05). After transfection for 7 days, Western blot results showed that the relative expression of MSK1 protein in group C was significantly lower than that in groups A and B (P<0.05); and the relative expression of PCNA protein was significantly higher than that in groups A and B (P<0.05). Immunofluorescence staining showed that MSK1 was expressed in the nuclei of the spinal cord and colocalized with green fluorescent protein, neuronal nuclei, and glial fibrillary acidic protein (GFAP). The relative expression area of MSK1 positive cells in group C was significantly higher than that in group B (P<0.05), and the relative expression areas of PCNA and GFAP positive cells were significantly lower than those in group B (P<0.05).ConclusionLentivirus-mediated MSK1 siRNA can effectively silence the expression of MSK1 in rat spinal cord tissue. MSK1 may play a critical role in the repair of SCI in rats by regulating the proliferation of glial cells.
Spinal cord injury (SCI) is a complex pathological process. Based on the encouraging results of preclinical experiments, some stem cell therapies have been translated into clinical practice. Mesenchymal stem cells (MSCs) have become one of the most important seed cells in the treatment of SCI due to their abundant sources, strong proliferation ability and low immunogenicity. However, the survival rate of MSCs transplanted to spinal cord injury is rather low, which hinders its further clinical application. In recent years, hydrogel materials have been widely used in tissue engineering because of their good biocompatibility and biodegradability. The treatment strategy of hydrogel combined with MSCs has made some progress in SCI repair. This review discusses the significance and the existing problems of MSCs in the repair of SCI. It also describes the research progress of hydrogel combined with MSCs in repairing SCI, and prospects its application in clinical research, aiming at providing reference and new ideas for future SCI treatment.