ObjectiveTo evaluate the efficacy of XiaochengqiMixture (XM) on promoting healing of colonic stoma. MethodsForty Wistar rats were divided into two groups randomly after colonectomy: experimental group (n=20) and control group (n=20). In early postoperatively stage rats were given gastric administration of XM in the experimental group and pure water in the control group. On day 3, 7, and 14 after establishment of animal models, laparotomy was performed in two groups of rats, respectively. Anastomotic stoma and surrounding tissues were harvested to detect the context of hydroxyproline and collagen fiber proportion by Masson dying. ResultsOn day 3 after establishment of animal models, hyperplastic collagen with small fiber was observed while no fasciculus was found. Hydroxyproline context and collagen fiber proportion of rats were higher in experimental group than those in control group (Plt;0.05). On day 7 after operation, many fasciculuses were found in two groups of rats, hydroxyproline context and collagen fiber proportion of rats were higher in experimental group than those in control group (Plt;0.01). On day 14 after operation, fasciculuses became bigger and more regular in arrangement, but there was no significant difference between the two groups (Pgt;0.05). ConclusionXM is capable of promoting healing of colonic stoma and might prevent the occurrence of anastomotic fistula.
Cytogenetic study of 18 colorectal carcinomas confirmed the extensive heterogeneity and the complexity of the karyotypic picture in this tumor.Karyotypic analysis showed that chromosomes 7 and 3 were of the highest chromosomal gaining frequencies(72%,66%) and chromosomal losses were shown in chromosome 17(50%),chromosome5(44%) and chromosome 18(33%).The structual rearrangements frequently involved were 17p(78%),5q(61%),6q,7q,8p,12q,2p,etc.A great number of marker chromosomes and polyploid chromosomes had bad prognosis relatively.According to these results,we conclude that chromosomes 17,5,and 18 may play an important role in the evolution of colorectal cancer.
Objective
To observe whether theograde axial flow of retinal ganglion cells (RGC) in diabetic rats at the early stage was damaged.
Methods
Diabetic model was induced by streptozotocin in 6 adult male Sprague-Dawley (SD)rats. Fluorogold (FG) was injected to the superior colliculi 4 weeks later.Streched preparation of retina was made 12 and 72 hours after the injection, and was stained after photographed by fluorescent microscope. The proportion of RGC with different sizes labeled by FG was calculated. Other 6 normal adult male SD rats were in the control group.
Results
Twelve hours after injection with FG, there was no difference of the total number of RGC in experimental and control group, but the ratio of small RGC was lower in experimental group than that in the control group; 72 hours after injection with FG, The number of RGC, especially the small RGC, decreased obviously in experimental group compared with the control group.
Conclusion
The speed of the retrograde axial flow of RGC in diabetic rats at the early stage is affected, and the small RGC are damageable.
(Chin J Ocul Fundus Dis, 2006, 22: 4-6)
Objective To investigate the expression of phosphate and tension homology deleted on chromsome ten (PTEN) and Basigin1, as well as their relationships with clinicopathological factors and molecular subtypes in invasive ductal carcinoma of breast. Methods The expressions of PTEN and Basigin1 protein were examined in 76 invasive ductal carcinoma of breast tissues by immunohistochemical method, and 20 breast benign hyperplasia tissues as control. These 76 patients underwent surgery in our hospital from Jan. 2014 to Dec. 2015. Results The high-expression rate of PTEN protein in invasive ductal carcinoma of breast tissues was lower than that in benign hyperplasia tissues [56.6% (43/76) vs. 85.0% (17/20), χ2=5.457, P=0.019], while the high-expression rate of Basigin1 protein was higher than that of the benign hyperplasia tissues [51.3% (39/76) vs 25.0% (5/20), χ2=4.417, P=0.036]. The high-expression of PTEN protein was positively correlated with WHO grade and lymph node metastasis status (P<0.05). The high-expression of Basigin1 protein was positively correlated with WHO grade, lymph node metastasis status, and TNM stage (P<0.05). In addition, the high-expression of PTEN protein was associated with molecular subtypes of breast cancer (P<0.001), and its high-expression rate was higher in Luminal A and Luminal B patients; the high-expression of Basigin1 protein was associated with molecular subtypes of breast cancer too (P<0.001), and the high-expression rate of Basigin1 protein was higher in Her-2 overexpression and basal-like subtypes of breast cancer patients. Spearman correlation analysis shown that expression of PTEN protein was negatively correlated with expression of Basigin1 protein (rs=–0.481, P<0.001). Conclusion PTEN and Basigin1 protein may have some mechanisms to promote the occurrence and development of breast cancer, which provide a new basis for targeted treatment of breast cancer.
Objective To investigate the relationships between circulating tumor cells (CTCs), circulating tumor endothelial cells (CTECs) and treatment methods in patients with nasopharyngeal carcinoma (NPC) at different stages of treatment. Methods The data of NPC patients at different treatment periods in West China Hospital of Sichuan University from March 2016 to November 2019 were retrospectively collected. The patients received CTCs test and part of those patients received CTECs test, by subtraction enrichment-immunostaining-fluorescence in situ hybridization. The relationships of CTCs and CTECs with radiotherapy and chemotherapy, and the correlations between CTCs and CTECs in NPC patients were analyzed. Results A total of 191 patients were included. Among them, there were 66 cases before initial treatment, 38 cases after induction chemotherapy, and 87 cases after concurrent chemoradiotherapy. A total of 127 patients received CTECs test, including 41 cases before initial treatment, 29 cases after induction chemotherapy, and 57 cases after concurrent chemoradiotherapy. The positive rates of CTCs were 89.4%, 81.6% and 69.0% respectively in the three stages of treatment, and the difference was statistically significant only between the pre-treatment group and the post-concurrent chemoradiotherapy group (P=0.003). The number of CTCs in the post-concurrent chemoradiotherapy group was lower than that in the pre-treatment group and the post-induction chemotherapy group (P<0.001, P=0.002). The number of triploid CTCs in the post-concurrent chemoradiotherapy group was significantly different from that in the pre-treatment group and the post-induction chemotherapy group (P=0.009, P=0.013). The number of tetraploid CTCs in the post-concurrent chemoradiotherapy group was significantly different from that in the post-induction chemotherapy group (P=0.007). The number of polyploidy (pentaploid or > 5 copies of chromosome 8) CTCs in the post-concurrent chemoradiotherapy group was significantly different from that in the pre-treatment group (P<0.001). The positive rates of CTECs were 70.7%, 82.8% and 64.9% respectively in the three stages of treatment, and the difference was not statistically significant (P>0.05). The number of CTECs in the post-concurrent chemoradiotherapy group was only lower than that in the post-induction chemotherapy group (P=0.009). There was no significant difference in the number of triploid or tetraploid CTECs among the three groups (P=0.265, P=0.088). The number of polyploid CTECs was statistically different only between the post-concurrent chemoradiotherapy group and the post-induction chemotherapy group (P=0.007). Spearman correlation analysis showed that there was a significant positive correlation between CTCs and CTECs (rs=0.437, P<0.001). Conclusions Concurrent chemoradiotherapy plays a decisive role in reducing the number of CTCs in the blood of NPC patients, while induction chemotherapy does not appear to directly cause changes in the number of CTCs. In NPC patients, different types of CTCs have different responses to different treatments. There is a significant positive correlation between CTECs level and CTCs level in NPC.
As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.
Objective To explore the histochemical staining for distinguishing and local izing nerve fibers and fascicles at histological level in three-dimensional reconstruction of peri pheral nerves. Methods The right median nerve was harvested from one fresh cadaver and embedded in OCT compound. The sample was serially horizontally sl iced with 6 μm thickness. All sections were stained with Karnovsky-Roots method (group A, n=30) firstly and then stained with toluidine blue (group B, =28) and Ponceau 2R (group C, n=21) in proper sequence. The results of each step were taken photos (× 100). After successfully stitching, the two-dimensional panorama images were compared, including texture feature, the number and aver gray level of area showing acetylchol inesterase (AchE) activity, and result of auto microscopic medical image segmentation. Results In groups A, B, and C, the number of AchE-positive area was (21.63 ± 4.06)× 102, (20.64 ± 3.51)× 102, and (20.54 ± 5.71)× 102, respectively, showing no significant difference among 3 groups (F=0.64, P=0.54); the mean gray level was (1.41 ± 0.06)× 102, (1.10 ± 0.05)× 102, and (1.14 ± 0.07)× 102, respectively, showing significant differences between group A and groups B and C (P lt; 0.001). In the image of group A, only AchE-positive area was stained; in the image of group B, myelin sheath was obscure; and in the image of group C, axons and myelin sheath could be indentified, the character of nerve fibers could be distinguished clearly and accurately, and the image segmentation of fascicles could be achieved easier than other 2 images. Conclusion The image of Karnovsky-Roots-toluidine blue-Ponceau 2R staining has no effect on the AchE-positive area in the image of Karnovsky-Roots staining and shows better texture feature. This improved histochemical process may provide ideal image for the three-dimensional reconstruction of peri pheral nerves.